【題目】若函數(shù) 圖象的兩條相鄰的對稱軸之間的距離為 ,且該函數(shù)圖象關(guān)于點(x0 , 0)成中心對稱, ,則x0=(
A.
B.
C.
D.

【答案】B
【解析】解:∵函數(shù) 圖象的兩條相鄰的對稱軸之間的距離為 = = ,∴ω=2, ∴f(x)=sin(2x+ ).
令2x+ =kπ,k∈Z,求得x= kπ﹣ ,故該函數(shù)的圖象的對稱中心為( kπ﹣ ,0 ),k∈Z.
根據(jù)該函數(shù)圖象關(guān)于點(x0 , 0)成中心對稱,結(jié)合 ,則x0= ,
故選:B.
【考點精析】解答此題的關(guān)鍵在于理解函數(shù)y=Asin(ωx+φ)的圖象變換的相關(guān)知識,掌握圖象上所有點向左(右)平移個單位長度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點的橫坐標伸長(縮短)到原來的倍(縱坐標不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點的縱坐標伸長(縮短)到原來的倍(橫坐標不變),得到函數(shù)的圖象.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)為常數(shù))的圖象在處有公切線.

(Ⅰ)求實數(shù)的值;

(Ⅱ)求函數(shù)的極大值和極小值;

(Ⅲ)關(guān)于x的方程由幾個不同的實數(shù)解?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知y=f(x)是二次函數(shù),方程f(x)=0有兩相等實根,且f′(x)=2x+2
(1)求f(x)的解析式.
(2)求函數(shù)y=f(x)與y=﹣x2﹣4x+1所圍成的圖形的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)f(x)=ax2﹣(a+1)x+1
(1)解關(guān)于x的不等式f(x)>0;
(2)若對任意的a∈[﹣1,1],不等式f(x)>0恒成立,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在極坐標系中,圓的極坐標方程為,若以極點為原點,極軸所在的直線為軸建立平面直角坐標系.

(1)求圓的參數(shù)方程;

(2)在直線坐標系中,點是圓上的動點,試求的最大值,并求出此時點的直角坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f(x)=|sinx|+2|cosx|的值域為(
A.[1,2]
B.[ ,3]
C.[2, ]
D.[1, ]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}滿足a1=2,前n項和為Sn , 若Sn=2(an﹣1),(n∈N+).
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=(log2an+12﹣(log2an2 , 若cn=anbn , 求{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐S﹣ABCD中,底面ABCD為平行四邊形,AB=3,AC=4,AD=5,SA⊥平面ABCD.

(1)證明:AC⊥平面SAB;
(2)若SA=2,求三棱錐A﹣SCD的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 + =1(a>b>0)的離心率為 ,且過點( , ).
(1)求橢圓方程;
(2)設(shè)不過原點O的直線l:y=kx+m(k≠0),與該橢圓交于P、Q兩點,直線OP、OQ的斜率依次為k1、k2 , 滿足4k=k1+k2 , 試問:當k變化時,m2是否為定值?若是,求出此定值,并證明你的結(jié)論;若不是,請說明理由.

查看答案和解析>>

同步練習冊答案