【題目】已知數(shù)列的前n項和為,,若是公差不為0的等差數(shù)列,且

1)求數(shù)列的通項公式;

2)證明:數(shù)列是等差數(shù)列;

3)記,若存在,),使得成立,求實數(shù)的取值范圍.

【答案】1;(2)證明見解析;(3.

【解析】

1)根據(jù)已知條件求得和數(shù)列的公差,由此求得數(shù)列的通項公式.

2)由(1)得到,進而得到數(shù)列是常數(shù)列,求得數(shù)列的通項公式,進而證得數(shù)列是等差數(shù)列.

3)先求得的表達(dá)式,然后求得的表達(dá)式,對進行分類討論,結(jié)合數(shù)列的單調(diào)性,求得的取值范圍.

1)設(shè)等差數(shù)列的公差為d,因為,所以

得,,即,

因為,所以,從而

2)由(1)知,,

即有

所以,

-①得,,整理得

兩邊除以得,,

所以數(shù)列是常數(shù)列.

所以,即,

所以,

所以數(shù)列是等差數(shù)列.

3)因為,所以,

所以

因為

當(dāng)時,

顯然,

①若,則恒成立,

所以,即

所以單調(diào)遞減,所以不存在;

②若,則恒成立,

所以,即,

所以單調(diào)遞減,所以不存在;

③若,則,所以當(dāng),成立,

所以存在

④若,則

當(dāng),且時,,單調(diào)遞增;

當(dāng),且時,,單調(diào)遞減,

不妨取,則

綜上,若存在,使得成立,則的取值范圍是.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程是為參數(shù),),在以坐標(biāo)原點為極點,軸的非負(fù)半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程是,等邊的頂點都在上,且點,,按照逆時針方向排列,點的極坐標(biāo)為.

(Ⅰ)求點,的直角坐標(biāo);

(Ⅱ)設(shè)上任意一點,求點到直線的距離的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),以原點為極點,軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

1)寫出直線的極坐標(biāo)方程與曲線的直角坐標(biāo)方程;

2)已知與直線平行的直線過點,且與曲線交于兩點,試求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在空間幾何體中,平面平面,都是邊長為2的等邊三角形,,點在平面上的射影在的平分線上,已知和平面所成角為.

(1)求證:平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),且曲線處的切線平行于直線

1)求a的值;

2)求函數(shù)的單調(diào)區(qū)間;

3)已知函數(shù)圖象上不同的兩點,試比較的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的兩焦點與短軸的一個端點的連線構(gòu)成面積為的等腰直角三角形.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)直線與橢圓相交于,兩點,試問:在軸上是否存在點,使得為等邊三角形,若存在,求直線的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

1)求的單調(diào)區(qū)間;

2)設(shè)曲線軸正半軸的交點為,曲線在點處的切線方程為,求證:對于任意的實數(shù),都有;

3)若方程為實數(shù))有兩個實數(shù)根,,且,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)有三個極值點,

(1)求實數(shù)的取值范圍;

(2)求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,圓的方程為,以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為

1)求圓的極坐標(biāo)方程與直線的直角坐標(biāo)方程;

2)設(shè)直線與圓相交于,兩點,求圓,處兩條切線的交點坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案