【題目】已知一圓經(jīng)過點(diǎn),且它的圓心在直線.

I求此圓的方程;

II若點(diǎn)為所求圓上任意一點(diǎn),且點(diǎn),求線段的中點(diǎn)的軌跡方程.

【答案】I;II.

【解析】

試題分析:I方法一:由已知可設(shè)圓心

圓心,的方程為.方法二:,線段的中點(diǎn)坐標(biāo)為的垂直平分線方程為方程組圓心的方程為;II設(shè)

.

試題解析:I方法一:由已知可設(shè)圓心,又由已知得,從而有

,解得:.

于是圓的圓心,半徑.

所以,圓的方程為.

方法二:,,,線段的中點(diǎn)坐標(biāo)為

從而線段的垂直平分線的斜率為,方程為

由方程組解得,

所以圓心,半徑,

故所求圓N的方程為

II設(shè),,則由為線段的中點(diǎn)得:

解得:.

又點(diǎn)在圓上,所以有,化簡得:.

故所求的軌跡方程為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為圓上的動點(diǎn), ,為定點(diǎn),

(1)求線段中點(diǎn)M的軌跡方程;

(2)若,求線段中點(diǎn)N的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知A(4,-3),B(2,-1)和直線l4x3y20

1求在直角坐標(biāo)平面內(nèi)滿足|PA||PB|的點(diǎn)P的方程;

2求在直角坐標(biāo)平面內(nèi)一點(diǎn)P滿足|PA||PB|且點(diǎn)P到直線l的距離為2的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若函數(shù)的最小值為,求的值;

(2)證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .

當(dāng)時(shí),求函數(shù)處的切線方程;

當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

若函數(shù)有兩個(gè)極值點(diǎn),不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)盒中裝有編號分別為1,2,3,4的四個(gè)形狀大小完全相同的小球.

(1)從盒中任取兩球,求取出的球的編號之和大于5的概率.

(2)從盒中任取一球,記下該球的編號,將球放回,再從盒中任取一球,記下該球的編號,求的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在高為2的梯形中, , ,過、分別作 ,垂足分別為。已知,將梯形沿、同側(cè)折起,得空間幾何體,如圖2。

(1)若,證明: ;

(2)若,證明:

(3)在(1),(2)的條件下,求三棱錐的體積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校高三共有2000名學(xué)生參加廣安市聯(lián)考,現(xiàn)隨機(jī)抽取100名學(xué)生的成績(單位:分),并列成如下表所示的頻數(shù)分布表:

組別

頻數(shù)

6

18

28

26

17

5

(1)試估計(jì)該年級成績分的學(xué)生人數(shù);

(2)已知樣本中成績在中的6名學(xué)生中,有4名男生,2名女生,現(xiàn)從中選2人進(jìn)行調(diào)研,求恰好選中一名男生一名女生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】公差不為零的等差數(shù)列{an}中,a3=7,且a2,a4a9成等比數(shù)列.

(1)求數(shù)列{an}的通項(xiàng)公式;

(2)設(shè)bn ,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

同步練習(xí)冊答案