設函數(shù),曲線通過點(0,2a+3),且在處的切線垂直于y軸.
(I)用a分別表示b和c;
(II)當bc取得最大值時,寫出的解析式;
(III)在(II)的條件下,g(x)滿足,求g(x)的最大值及相應x值.

(I)由已知可得,.
(II).
(III)時,的最大值是.

解析試題分析:(I)根據(jù)及導數(shù)的幾何意義即得到的關系.
(II)將表示成,應用二次函數(shù)知識,當時,取到最大值,得到,從而得到.
(III)根據(jù)
確定,
利用基本不等式,得到g(x)的最大值及相應x值.
試題解析:(I)由已知可得
又因為.
(II),
所以當時,取到最大值,此時
.
(III)因為,
所以,
又因為,,
,
所以,當且僅當,即時等號成立,
所以,即的最大值是.
考點:二次函數(shù)的性質,基本不等式,導數(shù)的幾何意義.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知圖像過點,且在處的切線方程是.
(1)求的解析式;
(2)求在區(qū)間上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),(其中為常數(shù));
(Ⅰ)如果函數(shù)有相同的極值點,求的值;
(Ⅱ)設,問是否存在,使得,若存在,請求出實數(shù)的取值范圍;若不存在,請說明理由.
(Ⅲ)記函數(shù),若函數(shù)有5個不同的零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知數(shù)列的前n項和為Sn,對一切正整數(shù)n,點在函數(shù)的圖像上,且過點的切線的斜率為kn
(1)求數(shù)列的通項公式;
(2)若,求數(shù)列的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),其中為常數(shù).
(Ⅰ)若函數(shù)是區(qū)間上的增函數(shù),求實數(shù)的取值范圍;
(Ⅱ)若時恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù).
(1)當時,求函數(shù)的單調區(qū)間;
(2)若時,函數(shù)在閉區(qū)間上的最大值為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),設
(Ⅰ)求函數(shù)的單調區(qū)間
(Ⅱ)若以函數(shù)圖象上任意一點為切點的切線的斜率恒成立,求實數(shù)的最小值
(Ⅲ)是否存在實數(shù),使得函數(shù)的圖象與函數(shù)的圖象恰有四個不同交點?若存在,求出實數(shù)的取值范圍;若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知曲線.
(Ⅰ)當時,求曲線的斜率為1的切線方程;
(Ⅱ)設斜率為的兩條直線與曲線相切于兩點,求證:中點在曲線上;
(Ⅲ)在(Ⅱ)的條件下,又已知直線的方程為:,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設數(shù)列的前項和為,已知(n∈N*).
(Ⅰ)求數(shù)列的通項公式;
(Ⅱ)求證:當x>0時,
(Ⅲ)令,數(shù)列的前項和為.利用(2)的結論證明:當n∈N*且n≥2時,.

查看答案和解析>>

同步練習冊答案