已知數(shù)列的前n項(xiàng)和為Sn,對(duì)一切正整數(shù)n,點(diǎn)在函數(shù)的圖像上,且過(guò)點(diǎn)的切線的斜率為kn
(1)求數(shù)列的通項(xiàng)公式;
(2)若,求數(shù)列的前n項(xiàng)和Tn

(1) (2)

解析試題分析:(1)根據(jù)點(diǎn)都在函數(shù)的圖像上,得到.利用“兩步一驗(yàn)”即得數(shù)列的通項(xiàng)公式.
(2)由導(dǎo)數(shù)的幾何意義得到,
從而可利用“錯(cuò)位相減法”求數(shù)列的前n項(xiàng)和Tn
本題綜合性較強(qiáng),但解題思路明確,難度適中.
試題解析:(1)點(diǎn)都在函數(shù)的圖像上,
.      2分
當(dāng)時(shí), 
當(dāng)時(shí),滿足上式,
所以數(shù)列的通項(xiàng)公式為       6分
(2)由求導(dǎo)可得,
因?yàn)檫^(guò)點(diǎn)的切線的斜率為,
,
   
  
兩式相減得
    9分
.         12分
考點(diǎn):導(dǎo)數(shù)的幾何意義,數(shù)列的通項(xiàng)公式,“錯(cuò)位相減法”.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(1)已知函數(shù)f(x)=ex-1-tx,?x0∈R,使f(x0)≤0,求實(shí)數(shù)t的取值范圍;
(2)證明:<ln,其中0<a<b;
(3)設(shè)[x]表示不超過(guò)x的最大整數(shù),證明:[ln(1+n)]≤[1++ +]≤1+[lnn](n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知a,b為常數(shù),a¹0,函數(shù)
(1)若a=2,b=1,求在(0,+∞)內(nèi)的極值;
(2)①若a>0,b>0,求證:在區(qū)間[1,2]上是增函數(shù);
②若,,且在區(qū)間[1,2]上是增函數(shù),求由所有點(diǎn)形成的平面區(qū)域的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)在區(qū)間上為減函數(shù),求實(shí)數(shù)的取值范圍;
(3)當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),
(Ⅰ)當(dāng)a=4時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)求函數(shù)g(x)在區(qū)間上的最小值;
(Ⅲ)若存在,使方程成立,求實(shí)數(shù)a的取值范圍(其中e=2.71828是自然對(duì)數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),其中
(Ⅰ)若是函數(shù)的極值點(diǎn),求實(shí)數(shù)的值;
(Ⅱ)若對(duì)任意的為自然對(duì)數(shù)的底數(shù))都有成立,求實(shí)數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù),曲線通過(guò)點(diǎn)(0,2a+3),且在處的切線垂直于y軸.
(I)用a分別表示b和c;
(II)當(dāng)bc取得最大值時(shí),寫出的解析式;
(III)在(II)的條件下,g(x)滿足,求g(x)的最大值及相應(yīng)x值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題13分) 已知函數(shù)為自然對(duì)數(shù)的底數(shù))。
(1)若,求函數(shù)的單調(diào)區(qū)間;
(2)是否存在實(shí)數(shù),使函數(shù)上是單調(diào)增函數(shù)?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由。恒成立,則,又,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某連鎖分店銷售某種商品,每件商品的成本為元,并且每件商品需向總店交元的管理費(fèi),預(yù)計(jì)當(dāng)每件商品的售價(jià)為元時(shí),一年的銷售量為萬(wàn)件.
(1)求該連鎖分店一年的利潤(rùn)(萬(wàn)元)與每件商品的售價(jià)的函數(shù)關(guān)系式;
(2)當(dāng)每件商品的售價(jià)為多少元時(shí),該連鎖分店一年的利潤(rùn)最大,并求出的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案