【題目】為響應(yīng)國(guó)建“精準(zhǔn)扶貧,產(chǎn)業(yè)扶貧”的戰(zhàn)略,某市面向全國(guó)征召《扶貧政策》義務(wù)宣傳志愿者,從年齡在[20,45]的500名志愿者中隨機(jī)抽取100名,其年齡頻率分布直方圖如圖所示
(1)求圖中x的值
(2)在抽出的100名志愿者中按年齡采取分層抽樣的方法抽取10名參加中心廣場(chǎng)的宣傳活動(dòng),再?gòu)倪@10名志愿者中選取3名擔(dān)任主要負(fù)責(zé)人,記這3名志愿者中“年齡低于35歲”的人數(shù)為Y,求Y的分布列及數(shù)學(xué)期望.
【答案】
(1)解:由頻率分布直方圖的性質(zhì)可得:(0.01+0.02+0.04+x+0.07)×5=1,解得x=0.06
(2)解:在抽出的100名志愿者中按年齡采取分層抽樣的方法抽取10名:“年齡低于35歲”的人數(shù)為6,“年齡高于35歲”的人數(shù)為4..再?gòu)倪@10名志愿者中選取3名擔(dān)任主要負(fù)責(zé)人,記這3名志愿者中“年齡低于35歲”的人數(shù)為Y可能為0,1,2,3.
則Y~B .P(Y=k)= .P(Y=0)= ,P(Y=1)= ,P(Y=2)= ,
P(Y=3)= .
Y | 0 | 1 | 2 | 3 |
P |
∴EY= =
【解析】(1)由頻率分布直方圖的性質(zhì)可得:(0.01+0.02+0.04+x+0.07)×5=1,解得x.(2)在抽出的100名志愿者中按年齡采取分層抽樣的方法抽取10名:“年齡低于35歲”的人數(shù)為6,“年齡高于35歲”的人數(shù)為4..再?gòu)倪@10名志愿者中選取3名擔(dān)任主要負(fù)責(zé)人,記這3名志愿者中“年齡低于35歲”的人數(shù)為Y可能為0,1,2,3.可得Y~B .P(Y=k)= .
【考點(diǎn)精析】認(rèn)真審題,首先需要了解離散型隨機(jī)變量及其分布列(在射擊、產(chǎn)品檢驗(yàn)等例子中,對(duì)于隨機(jī)變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機(jī)變量叫做離散型隨機(jī)變量.離散型隨機(jī)變量的分布列:一般的,設(shè)離散型隨機(jī)變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個(gè)值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機(jī)變量X 的概率分布,簡(jiǎn)稱分布列).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在邊長(zhǎng)為4的正方形ABCD的邊上有一點(diǎn)P,沿著折線BCDA由點(diǎn)B(起點(diǎn))向點(diǎn)A(終點(diǎn))運(yùn)動(dòng).設(shè)點(diǎn)P運(yùn)動(dòng)的路程為x,△APB的面積為y,且y與x之間的函數(shù)關(guān)系式用如圖所示的程序框圖給出.
(1)寫出程序框圖中①,②,③處應(yīng)填充的式子.
(2)若輸出的面積y值為6,則路程x的值為多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若對(duì)x∈[0,+∞),y∈[0,+∞),不等式ex+y﹣2+ex﹣y﹣2+2﹣4ax≥0恒成立,則實(shí)數(shù)a取值范圍是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(x)=|x﹣1|+|x+1|.
(1)求f(x)≤x+2的解集;
(2)若 R),求證: 對(duì)a∈R,且a≠0成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在區(qū)間[0,2]上任取兩個(gè)實(shí)數(shù)a,b,則函數(shù)f(x)=x3+ax﹣b在區(qū)間[﹣1,1]上有且只有一個(gè)零點(diǎn)的概率是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓C1:與圓C2:相交于A、B兩點(diǎn),
(1)求公共弦AB所在的直線方程;
(2)求圓心在直線上,且經(jīng)過(guò)A、B兩點(diǎn)的圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=ax﹣e(x+1)lna﹣ (a>0,且a≠1),e為自然對(duì)數(shù)的底數(shù).
(1)當(dāng)a=e時(shí),求函數(shù)y=f(x)在區(qū)間x∈[0,2]上的最大值
(2)若函數(shù)f(x)只有一個(gè)零點(diǎn),求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】中國(guó)古代算書(shū)《孫子算經(jīng)》中有一著名的問(wèn)題:今有物,不知其數(shù).三三數(shù)之剩二;五五數(shù)之剩三;七七數(shù)之剩二.問(wèn)物幾何?后來(lái),南宋數(shù)學(xué)家秦九昭在其《數(shù)書(shū)九章》中對(duì)此問(wèn)題的解法做了系統(tǒng)的論述,并稱之為“大衍求一術(shù)”.如圖程序框圖的算法思路源于“大衍求一術(shù)”,執(zhí)行該程序框圖,若輸入的a,b的值分別為40,34,則輸出的c的值為( )
A.7
B.9
C.20
D.22
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某保險(xiǎn)公司針對(duì)一個(gè)擁有20000人的企業(yè)推出一款意外險(xiǎn)產(chǎn)品,每年每位職工只要交少量保費(fèi),發(fā)生意外后可一次性獲得若干賠償金.保險(xiǎn)公司把企業(yè)的所有崗位共分為A、B、C三類工種,從事三類工種的人數(shù)分布比例如圖,根據(jù)歷史數(shù)據(jù)統(tǒng)計(jì)出三類工種的賠付頻率如下表(并以此估計(jì)賠付頻率).
工種類別 | A | B | C |
賠付頻率 |
對(duì)于A、B、C三類工種職工每人每年保費(fèi)分別為a元,a元,b元,出險(xiǎn)后的賠償金額分別為100萬(wàn)元,100萬(wàn)元,50萬(wàn)元,保險(xiǎn)公司在開(kāi)展此項(xiàng)業(yè)務(wù)過(guò)程中的固定支出為每年10萬(wàn)元.
(Ⅰ)若保險(xiǎn)公司要求利潤(rùn)的期望不低于保費(fèi)的20%,試確定保費(fèi)a、b所要滿足的條件;
(Ⅱ)現(xiàn)有如下兩個(gè)方案供企業(yè)選擇;
方案1:企業(yè)不與保險(xiǎn)公司合作,企業(yè)自行拿出與保險(xiǎn)提供的等額的賠償金額賠付給出險(xiǎn)職工;
方案2:企業(yè)與保險(xiǎn)公司合作,企業(yè)負(fù)責(zé)職工保費(fèi)的60%,職工個(gè)人負(fù)責(zé)保費(fèi)的40%,出險(xiǎn)后賠償金由保險(xiǎn)公司賠付.
若企業(yè)選擇翻翻2的支出(不包括職工支出)低于選擇方案1的支出期望,求保費(fèi)a、b所要滿足的條件,并判斷企業(yè)是否可與保險(xiǎn)公司合作.(若企業(yè)選擇方案2的支出低于選擇方案1的支出期望,且與(Ⅰ)中保險(xiǎn)公司所提條件不矛盾,則企業(yè)可與保險(xiǎn)公司合作.)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com