【題目】某保險公司針對一個擁有20000人的企業(yè)推出一款意外險產(chǎn)品,每年每位職工只要交少量保費,發(fā)生意外后可一次性獲得若干賠償金.保險公司把企業(yè)的所有崗位共分為A、B、C三類工種,從事三類工種的人數(shù)分布比例如圖,根據(jù)歷史數(shù)據(jù)統(tǒng)計出三類工種的賠付頻率如下表(并以此估計賠付頻率).

工種類別

A

B

C

賠付頻率

對于A、B、C三類工種職工每人每年保費分別為a元,a元,b元,出險后的賠償金額分別為100萬元,100萬元,50萬元,保險公司在開展此項業(yè)務過程中的固定支出為每年10萬元.

(Ⅰ)若保險公司要求利潤的期望不低于保費的20%,試確定保費a、b所要滿足的條件;
(Ⅱ)現(xiàn)有如下兩個方案供企業(yè)選擇;
方案1:企業(yè)不與保險公司合作,企業(yè)自行拿出與保險提供的等額的賠償金額賠付給出險職工;
方案2:企業(yè)與保險公司合作,企業(yè)負責職工保費的60%,職工個人負責保費的40%,出險后賠償金由保險公司賠付.
若企業(yè)選擇翻翻2的支出(不包括職工支出)低于選擇方案1的支出期望,求保費a、b所要滿足的條件,并判斷企業(yè)是否可與保險公司合作.(若企業(yè)選擇方案2的支出低于選擇方案1的支出期望,且與(Ⅰ)中保險公司所提條件不矛盾,則企業(yè)可與保險公司合作.)

【答案】解:(Ⅰ)設工種A,B,C職工的每份保單保險公司的效益為隨機變量X,Y,Z, 則隨機變量X的分布列為:

X

a

a﹣100×104

P

隨機變量Y的分布列為:

Y

a

a﹣100×104

P

隨機變量Z的分布列為:

Z

b

b﹣50×104

P

保險公司期望收益為 =a﹣10,
=a﹣20,
=b﹣50;
根據(jù)要求(a﹣10)×20000×0.6+(a﹣20)×20000×0.3+(b﹣50)×20000×0.1﹣10×104
≥(a×20000×0.6+a×20000×0.3+b×20000×0.1)×0.2,
解得9a+b≥275,
所以每張保單的保費需要滿足9a+b≥275元;
(Ⅱ)若該企業(yè)不與保險公司合作,則安全支出,
即賠償金的期望值為
20000×0.6× ×100×104+0.3× ×100×104+0.1× ×50×104=17×20000;
若該企業(yè)與保險公司合作,則安全支出,
即保費為20000×(0.6×a+0.3×a+0.1×b)×0.6=(0.9×a+0.1×b)×0.6×20000;
解得9a+b<283.33,
結(jié)果與(Ⅰ)不沖突,所以企業(yè)有可能與保險公司合作
【解析】(Ⅰ)設工種A,B,C職工的每份保單保險公司的效益為隨機變量X,Y,Z,寫出隨機變量X、Y、Z的分布列,計算保險公司期望收益EX、EY、EZ;根據(jù)要求列出不等式,求出a、b滿足的條件;(Ⅱ)計算企業(yè)不與保險公司合作時安全支出(即賠償金的期望值),以及企業(yè)與保險公司合作的安全支出(即保費),比較大小.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】為響應國建“精準扶貧,產(chǎn)業(yè)扶貧”的戰(zhàn)略,某市面向全國征召《扶貧政策》義務宣傳志愿者,從年齡在[20,45]的500名志愿者中隨機抽取100名,其年齡頻率分布直方圖如圖所示
(1)求圖中x的值
(2)在抽出的100名志愿者中按年齡采取分層抽樣的方法抽取10名參加中心廣場的宣傳活動,再從這10名志愿者中選取3名擔任主要負責人,記這3名志愿者中“年齡低于35歲”的人數(shù)為Y,求Y的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知等比數(shù)列{an}的前n項和為Sn , 且滿足2Sn=2n+1+λ(λ∈R). (Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若數(shù)列{bn}滿足bn= ,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】規(guī)定:投擲飛鏢3次為一輪,若3次中至少兩次投中8環(huán)以上為優(yōu)秀.根據(jù)以往經(jīng)驗某選手投擲一次命中8環(huán)以上的概率為 .現(xiàn)采用計算機做模擬實驗來估計該選手獲得優(yōu)秀的概率:用計算機產(chǎn)生0到9之間的隨機整數(shù),用0,1表示該次投擲未在 8 環(huán)以上,用2,3,4,5,6,7,8,9表示該次投擲在 8 環(huán)以上,經(jīng)隨機模擬試驗產(chǎn)生了如下 20 組隨機數(shù): 907 966 191 925 271 932 812 458 569 683
031 257 393 527 556 488 730 113 537 989
據(jù)此估計,該選手投擲 1 輪,可以拿到優(yōu)秀的概率為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】整改校園內(nèi)一塊長為15 m,寬為11 m的長方形草地(如圖A),將長減少1 m,寬增加1 m(如圖B).問草地面積是增加了還是減少了?假設長減少x m,寬增加x m(x>0),試研究以下問題:

x取什么值時,草地面積減少?

x取什么值時,草地面積增加?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我國南宋數(shù)學家秦九韶(約公元1202﹣1261年)給出了求n(n∈N*)次多項式anxn+an﹣1xn﹣1+…+a1x+a0 , 當x=x0時的值的一種簡捷算法.該算法被后人命名為“秦九韶算法”,例如,可將3次多項式改寫為a3x3+a2x2+a1x+a0=((a3x+a2)x+a1)x+a0 , 然后進行求值.運行如圖所示的程序框圖,能求得多項式( )的值.
A.x4+x3+2x2+3x+4
B.x4+2x3+3x2+4x+5
C.x3+x2+2x+3
D.x3+2x2+3x+4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】4月23人是“世界讀書日”,某中學在此期間開展了一系列的讀書教育活動,為了解本校學生課外閱讀情況,學校隨機抽取了100名學生對其課外閱讀時間進行調(diào)查,下面是根據(jù)調(diào)查結(jié)果繪制的學生日均課外閱讀時間(單位:分鐘)的頻率分布直方圖,若將日均課外閱讀時間不低于60分鐘的學生稱為“讀書謎”,低于60分鐘的學生稱為“非讀書謎”
(1)求x的值并估計全校3000名學生中讀書謎大概有多少?(經(jīng)頻率視為頻率)

非讀書迷

讀書迷

合計

15

45

合計


(2)根據(jù)已知條件完成下面2×2的列聯(lián)表,并據(jù)此判斷是否有99%的把握認為“讀書謎”與性別有關(guān)? 附:K2= n=a+b+c+d

P(K2≥k0

0.100

0.050

0.025

0.010

0.001

k0

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在一次考試中,5名同學的數(shù)學、物理成績?nèi)绫硭荆?/span>

學生

A

B

C

D

E

數(shù)學(x)

89

91

93

95

97

物理(y)

87

89

89

92

93

(1)根據(jù)表中數(shù)據(jù),求物理分y關(guān)于數(shù)學分x的回歸方程,并試估計某同學數(shù)學考100分時,他的物理得分;

(2)要從4名數(shù)學成績在90分以上的同學中選出2名參加一項活動,以X表示選中的同學中物理成績高于90分的人數(shù),試解決下列問題:

①求至少選中1名物理成績在90分以下的同學的概率;

②求隨機變變量X的分布列及數(shù)學期望

附:回歸方程:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐P﹣ABCD中,∠ABC=∠BAD=90℃,BC=2AD,△PAB與△PAD都是等邊三角形,平面ABCD⊥平面PBD.
(I)證明:CD⊥平面PBD;
(II)求二面角A﹣PD﹣C的余弦值.

查看答案和解析>>

同步練習冊答案