【題目】已知某快遞公司收取快遞費的標準是:重量不超過的包裹收費元;重量超過的包裹,在收費元的基礎上,每超過(不足,按計算)需再收元.該快遞公司承攬了一個工藝品廠家的全部玻璃工藝品包裹的郵寄事宜,該廠家隨機統(tǒng)計了件這種包裹的兩個統(tǒng)計數(shù)表如下:

包裹重量

包裹數(shù)

損壞件數(shù)

包裹重量

出廠價(元件)

賣價(元件)

估計該快遞公司對每件包裹收取快遞費的平均值;

將包裹重量落入各組的頻率視為概率,該工藝品廠家承擔全部運費,每個包裹只有一件產(chǎn)品,如果客戶收到有損壞品的包裹,該快遞公司每件按其出廠價的賠償給廠家.現(xiàn)該廠準備給客戶郵寄重量在區(qū)間內(nèi)的工藝品各件,求該廠家這兩件工藝品獲得利潤的分布列和期望.

【答案】元;見解析,.

【解析】

由統(tǒng)計表估計該快遞公司對每件包裹收取的快遞費的平均值;

重量在的產(chǎn)品數(shù)為,其損壞率為,重量在的產(chǎn)品數(shù)為,其損壞率為,設重量在的這件產(chǎn)品的利潤記為,重量在的這件產(chǎn)品的利潤記為,,,,,分別求出相應的概率,由此能求出該廠家這兩件工藝品獲得利潤的分布列和期望.

解:根據(jù)題意,設公司對每件包裹收取的快遞費的平均值為,

(元).

重量在的產(chǎn)品數(shù)為,其損壞率為

重量在的產(chǎn)品數(shù)為,其損壞率為

設重量在的這件產(chǎn)品的利潤記為,

,

設重量在的這件產(chǎn)品的利潤記為,

,

所以,,,,

,

,

所以其分布列為:

利潤

根據(jù)題意,

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的右焦點為F,直線lC交于MN兩點.

1)若l過點F,點M,N到直線y2的距離分別為d1,d2,且,求l的方程;

2)若點M的坐標為(0,1),直線m過點MC于另一點N′,當直線lm的斜率之和為2時,證明:直線NN′過定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 的兩個焦點與短軸的一個端點是直角三角形的三個頂點,直線 與橢圓有且只有一個公共點.

(Ⅰ)求橢圓的方程及點的坐標;

(Ⅱ)設是坐標原點,直線平行于,與橢圓交于不同的兩點,且與直線交于點,證明:存在常數(shù),使得,并求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知下列命題:

①函數(shù)上單調(diào)遞減,在上單調(diào)遞增;

②若函數(shù)上有兩個零點,則的取值范圍是;

③當時,函數(shù)的最大值為0;

④函數(shù)上單調(diào)遞減;

上述命題正確的是_________(填序號).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在傳染病學中,通常把從致病刺激物侵入機體或者對機體發(fā)生作用起,到機體出現(xiàn)反應或開始呈現(xiàn)該疾病對應的相關癥狀時止的這一階段稱為潛伏期.一研究團隊統(tǒng)計了某地區(qū)1000名患者的相關信息,得到如下表格:

潛伏期(單位:天)

人數(shù)

85

205

310

250

130

15

5

1)求這1000名患者的潛伏期的樣本平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);

2)該傳染病的潛伏期受諸多因素的影響,為研究潛伏期與患者年齡的關系,以潛伏期是否超過6天為標準進行分層抽樣,從上述1000名患者中抽取200人,得到如下列聯(lián)表.請將列聯(lián)表補充完整,并根據(jù)列聯(lián)表判斷是否有的把握認為潛伏期與患者年齡有關;

潛伏期

潛伏期

總計

50歲以上(含50歲)

100

50歲以下

55

總計

200

3)以這1000名患者的潛伏期超過6天的頻率,代替該地區(qū)1名患者潛伏期超過6天發(fā)生的概率,每名患者的潛伏期是否超過6天相互獨立.為了深入硏究,該硏究團隊隨機調(diào)查了20名患者,設潛伏期超過6天的人數(shù)為,則的期望是多少?

附:

0.05

0.025

0.010

3.841

5.024

6.635

,其中

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知中,,,,,分別是,的中點,將沿翻折,得到如圖所示的四棱錐,且,設的中點.

1)證明:;

2)求直線與平面所成角的的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)討論函數(shù)的單調(diào)性;

2)若函數(shù)在區(qū)間上有兩個極值點,,證明:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2020年寒假期間新冠肺炎肆虐,全國人民眾志成城抗擊疫情.某市要求全體市民在家隔離,同時決定全市所有學校推遲開學.某區(qū)教育局為了讓學生“停課不停學”,要求學校各科老師每天在網(wǎng)上授課,每天共280分鐘,請學生自主學習.區(qū)教育局為了了解高三學生網(wǎng)上學習情況,上課幾天后在全區(qū)高三學生中采取隨機抽樣的方法抽取了100名學生進行問卷調(diào)查,為了方便表述把學習時間在分鐘的學生稱為類,把學習時間在分鐘的學生稱為類,把學習時間在分鐘的學生稱為類,隨機調(diào)查的100名學生學習時間的人數(shù)頻率分布直方圖如圖所示:以頻率估計概率回答下列問題:

1)求100名學生中,,三類學生分別有多少人?

2)在,三類學生中,按分層抽樣的方法從上述100個學生中抽取10人,并在這10人中任意邀請3人電話訪談,求邀請的3人中是類的學生人數(shù)的分布列和數(shù)學期望;

3)某校高三(1)班有50名學生,某天語文和數(shù)學老師計劃分別在19:0019:4020:0020:40在線上與學生交流,由于受校園網(wǎng)絡平臺的限制,每次只能30個人同時在線學習交流.假設這兩個時間段高三(1)班都有30名學生相互獨立地隨機登錄參加學習交流.表示參加語文或數(shù)學學習交流的人數(shù),當為多少時,其概率最大.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】 為等差數(shù)列 的前 項和,其中 ,且

(1)求常數(shù) 的值,并寫出 的通項公式;

(2)記 ,數(shù)列 的前 項和為 ,若對任意的 ,都有 ,求常數(shù) 的最小值.

查看答案和解析>>

同步練習冊答案