已知雙曲線方程為,以定點為中點的弦存在嗎?若存在,求出其所在直線的方程,若不存在,請說明理由.
不存在
設(shè)所求直線方程為,
,將它代入,
整理得.      ②
設(shè)直線與雙曲線相交于,則
為線段的中點,
,即,解得
此時,方程②為
其根的判別式,則實數(shù)②無實數(shù)根,即直線與雙曲線不相交.
從而以為中點的弦不存在.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的一條準(zhǔn)線方程是其左、右頂點分別是A、B;雙曲線的一條漸近線方程為3x-5y=0.
(Ⅰ)求橢圓C1的方程及雙曲線C2的離心率;
(Ⅱ)在第一象限內(nèi)取雙曲線C2上一點P,連結(jié)AP交橢圓C1于點M,連結(jié)PB并延長交橢圓C1于點N,若. 求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線y=x2上存在兩個不同的點MN,關(guān)于直線y=-kx+對稱,求k的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線的頂點在坐標(biāo)原點,且開口向右,點AB,C在拋物線上,△ABC的重心F為拋物線的焦點,直線AB的方程為。
(Ⅰ)求拋物線的方程;
(Ⅱ)設(shè)點M為某定點,過點M的動直線l與拋物線相交于P,Q兩點,試推斷是否存在定點M,使得以線段PQ為直徑的圓經(jīng)過坐標(biāo)原點?若存在,求點M的坐標(biāo);若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

若曲線上有關(guān)于直線對稱的不同的兩點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓長軸長,焦距,過焦點作一直線,交橢圓于兩點.設(shè),當(dāng)取何值時,等于橢圓短軸的長?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

求證:雙曲線上任何一點到兩條漸近線的距離之積為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的中心在原點,焦點在軸上,右準(zhǔn)線的方程為,傾斜角為的直線交橢圓兩點,且的中點坐標(biāo)為,設(shè)為橢圓的右頂點,為橢圓上兩點,且,三者的平方成等差數(shù)列,則直線斜率之積的絕對值是否為定值,若是,請求出定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知是過點的兩條互相垂直的直線,且與雙曲線各兩個交點,分別為
(1)求的斜率的取值范圍;    (2)若,求的方程.

查看答案和解析>>

同步練習(xí)冊答案