已知函數(shù)f(x)=
a
a2-1
(ax-a-x),a>1

(1)用a表示f(2),f(3),并化簡;
(2)比較
f(2)
2
f(1)
1
,
f(3)
3
f(2)
2
的大小,并由此歸納出一個更一般的結(jié)論.(不要求寫出證明過程).
分析:(1)直接計算f(2),f(3),即可;
(2)利用基本不等式和做差比較法比較大小,歸納結(jié)論,構(gòu)造函數(shù)進行證明.
解答:解:(1)直接計算知:
f(2)=a+a-1,f(3)=a2+a-2+1,
(2)
f(1)
1
=1
,
f(2)
2
=
1
2
(a+a-1)
,
f(3)
3
=
a2+1+a-2
3
,
根據(jù)基本不等式
f(2)
2
=
1
2
(a+a-1)>1=
f(1)
1
,
f(3)
3
-
f(2)
2
f(3)
3
-[
f(2)
2
]2=
(a-a-1)2
12
>0

所以
f(3)
3
f(2)
2
f(1)
1

歸納:?x>0,
f(x+1)
x+1
f(x)
x

g(x)=
f(x)
x
,x>0,g/(x)=
xf/(x)-f(x)
x2
a
x2
×
x(ax+a-x)lna-(ax-a-x)
a2-1

h(x)=
x(ax+a-x)lna-(ax-a-x)
a2-1
,
則h(0)=0且 h/(x)=
x(ax-a-x)ln2a
a2-1
,
討論知 h/(x)=
x(ax-a-x)ln2a
a2-1
>0

從而h(x)>h(0)=0,g′(x)>0,g(x)在R+上單調(diào)增加,
所以?x>0,
f(x+1)
x+1
f(x)
x
點評:本題考查比較大小、歸納推理、函數(shù)單調(diào)性的證明及應用,綜合性強,難度較大.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=a-
12x+1

(1)求證:不論a為何實數(shù)f(x)總是為增函數(shù);
(2)確定a的值,使f(x)為奇函數(shù);
(3)當f(x)為奇函數(shù)時,求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)
a-x  ,x≤0
1  ,0<x≤3
(x-5)2-a,x>3
(a>0且a≠1)圖象經(jīng)過點Q(8,6).
(1)求a的值,并在直線坐標系中畫出函數(shù)f(x)的大致圖象;
(2)求函數(shù)f(t)-9的零點;
(3)設q(t)=f(t+1)-f(t)(t∈R),求函數(shù)q(t)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=a-
1
2x+1
,若f(x)為奇函數(shù),則a=( 。
A、
1
2
B、2
C、
1
3
D、3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
a(x-1)x2
,其中a>0.
(I)求函數(shù)f(x)的單調(diào)區(qū)間;
(II)若直線x-y-1=0是曲線y=f(x)的切線,求實數(shù)a的值;
(III)設g(x)=xlnx-x2f(x),求g(x)在區(qū)間[1,e]上的最小值.(其中e為自然對數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=a-
12x-1
,(a∈R)
(1)求f(x)的定義域;
(2)若f(x)為奇函數(shù),求a的值;
(3)考察f(x)在定義域上單調(diào)性的情況,并證明你的結(jié)論.

查看答案和解析>>

同步練習冊答案