已知函數(shù)f(x)是偶函數(shù),當(dāng)x∈[-1,0)時(shí),f(x)=1-x,又f(x)的圖象關(guān)于直線x=1對(duì)稱,求f(x)在[-2,-1)上的解析式.
考點(diǎn):函數(shù)奇偶性的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:本題利用函數(shù)的奇偶性、對(duì)稱性將區(qū)間[-2,-1)上的函數(shù)轉(zhuǎn)化為[-1,0)的函數(shù),再利用已知條件求出f(x)在[-2,-1)上的解析式.得到本題結(jié)論.
解答: 解:∵函數(shù)f(x)是偶函數(shù),
∴f(-x)=f(x).
∵f(x)的圖象關(guān)于直線x=1對(duì)稱,
∴f(1+x)=f(1-x).
當(dāng)x∈[-2,-1)時(shí),-2-x∈[-1,0),
f(x)=f(-x)=f[1-(1+x)]=f(1+(1+x))=f(2+x)=f(-2-x)=1-(-2-x)=x+3.
∴f(x)在[-2,-1)上的解析式為f(x)=x+3.x∈[-2,-1).
點(diǎn)評(píng):本題考查了函數(shù)的奇偶性、對(duì)稱性和解析式,本題計(jì)算量適中,有一定的思維難度,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
a•3xx≤0
1
x
-x
x>0
,若關(guān)于x的方程f[f(x)]=0有且僅有一解,則實(shí)數(shù)a的取值范圍是( 。
A、(-∞,0)
B、(-∞,0)∪(0,1)
C、(0,1)
D、(0,1)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

解方程:2log3x=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

雙曲線9x2-4y2=36的左、右焦點(diǎn)分別為F1,F(xiàn)2,點(diǎn)P在雙曲線上,且|PF1|•|PF2|=16,求△F1PF2的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求函數(shù)y=log2
x
4
•log2
x
8
(x∈[
1
4
,8]的最大值和最小值并求此時(shí)x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a∈Z,且0≤a<13,若512013+a能被13整除,則a=(  )
A、1B、2C、11D、12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=-cos22x+
3
sin2xcos2x+
3
2

(1)將f(x)化成Asin(ωx+φ)+B的形成,并求出其周期;
(2)當(dāng)x∈[-
π
12
π
6
],求f(x)的值域并指出取得最大最小值的x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=3x,f(a+2)=27,g(x)=λ•2ax-4x的定義域是[0,1]
(1)求a的值;
(2)若函數(shù)g(x)的最大值為
1
2
,求實(shí)數(shù)λ的值;
(3)若函數(shù)g(x)在[0,1]是單調(diào)減函數(shù),求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

集合{-1,0,1}共有
 
個(gè)非空真子集.

查看答案和解析>>

同步練習(xí)冊(cè)答案