在區(qū)間[-π,π]內(nèi)隨機取兩個數(shù)分別記為a,b,則使得函數(shù)f(x)=x2+2ax-b2+π在(-∞,+∞)上有零點的概率為( 。
A、
1
4
B、
1
2
C、
3
4
D、
7
8
考點:幾何概型
專題:計算題,概率與統(tǒng)計
分析:本題是一個幾何概型,由a,b使得函數(shù)f(x)=x2+2ax-b2+π有零點,得到關(guān)于a、b的關(guān)系式,寫出試驗發(fā)生時包含的所有事件和滿足條件的事件,做出對應(yīng)的面積,求比值得到結(jié)果.
解答: 解:由題意知本題是一個幾何概型,
∵a,b使得函數(shù)f(x)=x2+2ax-b2+π有零點,
∴△≥0
∴a2+b2≥π
試驗發(fā)生時包含的所有事件是Ω={(a,b)|-π≤a≤π,-π≤b≤π}
∴S=(2π)2=4π2,
而滿足條件的事件是{(a,b)|a2+b2≥π},
∴s=4π22=3π2,
由幾何概型公式得到P=
3
4
,
故選:C.
點評:幾何概型的概率估算公式中的“幾何度量”,可以為線段長度、面積、體積等,而且這個“幾何度量”只與“大小”有關(guān),而與形狀和位置無關(guān).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|97x2-231x-43=0,x∈R},B={x|x2+1=0,x∈R},則A∩B=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

參數(shù)方程
x=arcsint
y=arccos(-t)
(t為參數(shù)),表示的曲線的一般方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下面對函數(shù)y=f(x)零點的認(rèn)識正確的是( 。
A、函數(shù)的零點是指函數(shù)圖象與x軸的交點
B、函數(shù)的零點是指函數(shù)圖象與y軸的交點
C、函數(shù)的零點是指方程f(x)=0的根
D、函數(shù)的零點是指x值為0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

cos350°-2sin160°
sin(-190°)
=( 。
A、-
3
B、-
3
2
C、
3
2
D、
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中是假命題的是( 。
A、不等式|x-3|+|x+1|<6的整數(shù)解有7個
B、?a>0,f(x)=lnx-a有零點
C、若y=f(x)的圖象關(guān)于某點對稱,那么?a,b∈R使得y=f(x-a)+b是奇函數(shù)
D、?m∈R使f(x)=(m-1)•x m2-4m+3是冪函數(shù),且在(0,+∞)上遞減

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在下列函數(shù)中,最小值是2
2
的是( 。
A、y=2lgx+
1
lgx
(x>0)
B、y=sinx+
2
sinx
,x∈(0,π)
C、y=
x2+5
x2+3
D、y=ex+2e-x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)復(fù)數(shù)Z滿足(2+i)•Z=1-2i3,則復(fù)數(shù)Z對應(yīng)的點位于復(fù)平面內(nèi)(  )
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

根據(jù)下列條件,分別求下列函數(shù)的解析式:
(1)已知f(
x
+1)=x+2
x
;
(2)若f(x)為一次函數(shù),且滿足f[f(x)]=4x+6.

查看答案和解析>>

同步練習(xí)冊答案