已知曲線C的參數(shù)方程為
x=2cost
y=2sint
(t為參數(shù)),曲線C在點(1,
3
)處的切線為l.以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,求l的極坐標方程.
考點:參數(shù)方程化成普通方程
專題:坐標系和參數(shù)方程
分析:把曲線C的參數(shù)方程化為普通方程,求出切線l的斜率k,寫出切線l的方程,再化為極坐標方程.
解答:解:把曲線C的參數(shù)方程
x=2cost
y=2sint
(t為參數(shù))化為普通方程,得:
x2+y2=4,∴切線為l的斜率k=-
1
3
=-
3
3
,
∴切線為l的方程為:y-
3
=-
3
3
(x-1)
,即x+
3
y-4=0
,
化為極坐標方程是:ρsin(θ+
π
6
)=2
點評:本題考查了參數(shù)方程與極坐標方程的應用問題,解題時應先把曲線C的參數(shù)方程化為普通方程,求出切線的普通方程,再把普通方程化為極坐標方程,是基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系中,直線L的參數(shù)方程為
x=
1
2
t
y=
2
2
+
3
2
t
(t為參數(shù)),則直線L的普通方程為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在直角坐標系xOy中,直線l的參數(shù)方程為
x=1+tcosα
y=tsinα
(t為參數(shù)).在極坐標系(與直角坐標系
xOy取相同的長度單位,且以原點O為極點,以x軸的正半軸為極軸)中,曲線C的方程為sinθ=
ρ
2
-
2
ρ

(Ⅰ)判斷直線l與曲線C公共點的個數(shù),并說明理由;
(Ⅱ)當α=
π
4
時,求直線l與曲線C公共點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系xOy中,已知C1
x=cosθ
y=sinθ
(θ為參數(shù)),將C1上的所有點的橫坐標、縱坐標分別伸長為原來的
2
和2倍后得到曲線C2以平面直角坐標系xOy的原點O為極點,x軸的正半軸為極軸,取相同的單位長度建立極坐標系,已知直線l:ρ(
2
cosθ+sinθ)=4
(1)試寫出曲線C1的極坐標方程與曲線C2的參數(shù)方程;
(2)在曲線C2上求一點P,使點P到直線l的距離最小,并求此最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系xOy中,已知直線l經(jīng)過點P(
1
2
,1),傾斜角α=
π
6
,在極坐標系(與直角坐標系xOy取相同的長度單位,以原點O為極點,以x軸正半軸為極軸)中,圓C的極坐標方程為ρ=2
2
cos(θ-
π
4
).
(Ⅰ)寫出直線l的參數(shù)方程,并把圓C的極坐標方程化為直角坐標方程;
(Ⅱ)設l與圓C相交于A,B兩點,求|PA|+|PB|的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系xOy中,直線l的參數(shù)方程為
x=2-t
y=
3
t
(t
為參數(shù)),P.Q分別為直線l與x軸、y軸的交點,線段PQ的中點為M.
(I)求直線l的直角坐標方程;
(Ⅱ)以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,求點M的極坐標和直線OM的極坐標方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=sinx•ln|x|的部分圖象為( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列函數(shù)f(x)圖象中,滿足f(
1
4
)>f(3)>f(2)的只可能是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列四個函數(shù):①f(x)=x3+x2;②f(x)=x4+x;③f(x)=sin2x+x;④f(x)=cos2x+sinx中,僅通過平移變換就能使函數(shù)圖象為奇函數(shù)或偶函數(shù)圖象的函數(shù)為(  )
A、①②③B、②③④
C、①②④D、①③④

查看答案和解析>>

同步練習冊答案