分析 (1)利用已知條件求出直線AC,BC的斜率kAC,kBC,通過${k_{AC}}•{k_{BC}}=-\frac{4}{9}$.求出動點C的軌跡方程.
(2)利用數(shù)量積為0,求出P的方程,然后與橢圓方程聯(lián)立,求出交點坐標(biāo)即可.
解答 (本小題滿分14分)
解:(1)${k_{AC}}=\frac{y}{x+3}$(x≠-3),${k_{BC}}=\frac{y}{x-3}$(x≠3)
又${k_{AC}}•{k_{BC}}=-\frac{4}{9}$,∴$\frac{y}{x+3}•\frac{y}{x-3}=-\frac{4}{9}$(3分)
化簡整理得$\frac{x^2}{9}+\frac{y^2}{4}=1$(x≠±3)(6分)
(2)設(shè)曲線C上存在點P(x,y)滿足$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}=0$$\overrightarrow{P{F_1}}=(-\sqrt{5}-x,-y)$ $\overrightarrow{P{F_2}}=(\sqrt{5}-x,-y)$
∴$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}={x^2}-5+{y^2}=0$(9分)
聯(lián)立方程組$\left\{\begin{array}{l}{x^2}+{y^2}=5\\ \frac{x^2}{9}+\frac{y^2}{4}=1\end{array}\right.$,解得$\left\{\begin{array}{l}{x^2}=\frac{9}{5}\\{y^2}=\frac{16}{5}\end{array}\right.$(12分)
∴存在四個點滿足條件,它們是:$({\frac{3}{5}\sqrt{5},\frac{4}{5}\sqrt{5}})$,$({-\frac{3}{5}\sqrt{5},\frac{4}{5}\sqrt{5}})$,$({\frac{3}{5}\sqrt{5},-\frac{4}{5}\sqrt{5}})$,$({-\frac{3}{5}\sqrt{5},-\frac{4}{5}\sqrt{5}})$(14分)
點評 本題考查軌跡方程的求法,圓錐曲線之間的關(guān)系的綜合應(yīng)用,考查計算能力.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x-2y+6=0 | B. | 4x-2y+9=0 | C. | x+2y-34=0 | D. | 2x-y-18=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | $\frac{3}{2}$ | C. | 1 | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com