【題目】已知函數(shù) .
(1)當(dāng)時(shí),若函數(shù)恰有一個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍;
(2)當(dāng), 時(shí),對(duì)任意,有成立,求實(shí)數(shù)的取值范圍.
【答案】(1)或(2)
【解析】試題分析:(1)討論、兩種情況,分別利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,結(jié)合函數(shù)的單調(diào)性,利用零點(diǎn)存在定理可得函數(shù)恰有一個(gè)零點(diǎn)時(shí)實(shí)數(shù)的取值范圍;(2)對(duì)任意,有成立,等價(jià)于,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,分別求出最大值與最小值,解不等式即可的結(jié)果.
試題解析:(1)函數(shù)的定義域?yàn)?/span>.
當(dāng)時(shí), ,所以.
①當(dāng)時(shí), ,所以在上單調(diào)遞增,
取,則,
(或:因?yàn)?/span>且時(shí),所以.)
因?yàn)?/span>,所以,此時(shí)函數(shù)有一個(gè)零點(diǎn).
②當(dāng)時(shí),令,解得.
當(dāng)時(shí), ,所以在上單調(diào)遞減;
當(dāng)時(shí), ,所以在上單調(diào)遞增.
要使函數(shù)有一個(gè)零點(diǎn),則即.
綜上所述,若函數(shù)恰有一個(gè)零點(diǎn),則或.
(2)因?yàn)閷?duì)任意,有成立,
因?yàn)?/span>,
所以.
因?yàn)?/span>,則.
所以,所以.
當(dāng)時(shí), ,當(dāng)時(shí), ,
所以函數(shù)在上單調(diào)遞減,在上單調(diào)遞增, ,
因?yàn)?/span>與,所以.
設(shè) ,
則.
所以在上單調(diào)遞增,故,所以.
從而 .
所以即,
設(shè) ,則.
當(dāng)時(shí), ,所以在上單調(diào)遞增.
又,所以,即為,解得.
因?yàn)?/span>,所以的取值范圍為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠的A、B、C三個(gè)不同車間生產(chǎn)同一產(chǎn)品的數(shù)量(單位:件)如下表所示.質(zhì)檢人員用分層抽樣的方法從這些產(chǎn)品中共抽取6件樣品進(jìn)行檢測(cè).
車間 | A | B | C |
數(shù)量 | 50 | 150 | 100 |
(1)求這6件樣品中來(lái)自A、B、C各車間產(chǎn)品的數(shù)量;
(2)若在這6件樣品中隨機(jī)抽取2件進(jìn)行進(jìn)一步檢測(cè),求這2件商品來(lái)自相同車間的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中, 為坐標(biāo)原點(diǎn), 、是雙曲線上的兩個(gè)動(dòng)點(diǎn),動(dòng)點(diǎn)滿足,直線與直線斜率之積為2,已知平面內(nèi)存在兩定點(diǎn)、,使得為定值,則該定值為________
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校隨機(jī)抽取20個(gè)班,調(diào)查各班中有網(wǎng)上購(gòu)物經(jīng)歷的人數(shù),所得數(shù)據(jù)的莖葉圖如圖所示.以組距為5將數(shù)據(jù)分組成[0,5),[5,10),…,[30,35),[35,40]時(shí),所作的頻率分布直方圖是( )
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若在時(shí)取到極值,求的值及的圖象在處的切線方程;
(2)若在時(shí)恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) .
(1)當(dāng)時(shí),討論函數(shù)的單調(diào)性;
(2)當(dāng), 時(shí),對(duì)任意,有成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=bln x.
(1)若函數(shù)y=f(x)圖象上的點(diǎn)到直線x-y-3=0距離的最小值為2 ,求a的值;
(2)對(duì)于函數(shù)f(x)與g(x)定義域上的任意實(shí)數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(I)若曲線存在斜率為-1的切線,求實(shí)數(shù)a的取值范圍;
(II)求的單調(diào)區(qū)間;
(III)設(shè)函數(shù),求證:當(dāng)時(shí), 在上存在極小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com