【題目】是公差不為零的等差數(shù)列,滿足數(shù)列的通項公式為

1)求數(shù)列的通項公式;

2將數(shù)列,中的公共項按從小到大的順序構成數(shù)列,請直接寫出數(shù)列的通項公式;

3是否存在正整數(shù) ,使得成等差數(shù)列?若存在,求出的值;若不存在,請說明理由

【答案】(1)(2)(3)存在正整數(shù)m11n1;m2,n3;m6,n11使得b2bm,bn成等差數(shù)列

【解析】試題分析:(1)利用基本元的思想,將已知條件轉化為的形式,解方程組求得 的值,并求得的通項公式.(2)由于是首項為,公差為的等差數(shù)列,,,首項為,第二項為的等差數(shù)列,是首項為,公差為的等差數(shù)列,故通項公式為.(3) ,先假設存在這樣的數(shù),利用成等差數(shù)列,化簡得到,利用列舉法求得的值.

試題解析:

1設公差為,則,由性質得,因為,所以,即,又由,解得

所以的通項公式為

(2)

(3),假設存在正整數(shù)m、n,使得d5,dm,dn成等差數(shù)列,則d5dn2dm

所以 化簡得:2m13

n2=-1,即n1時,m11,符合題意

n21,即n3時,m2,符合題意

n23,即n5時,m5(舍去)

n29,即n11時,m6,符合題意.

所以存在正整數(shù)m11n1;m2,n3m6,n11

使得b2bm,bn成等差數(shù)列

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f(x)= + 的值域為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程
在直角坐標系 中,直線 的參數(shù)方程為 為參數(shù)),以原點為極點, 軸正半軸為極軸建立極坐標系,圓 的極坐標方程為 .
(1)寫出圓 的直角坐標方程;
(2) 為直線 上一動點,當 到圓心 的距離最小時,求 的直角坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線l4x3y100,半徑為2的圓Cl相切,圓心Cx軸上且在直線l的右上方.

(1)求圓C的方程;

(2)過點M(1,0)的直線與圓C交于A,B兩點(Ax軸上方),問在x軸正半軸上是否存在定點N,使得x軸平分∠ANB?若存在,請求出點N的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=2 sin( ωx)cos( ωx)+2cos2 ωx)(ω>0),且函數(shù)f(x)的最小正周期為π.
(1)求ω的值;
(2)求f(x)在區(qū)間 上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,橢圓C的參數(shù)方程為 (θ為參數(shù)),直線l的參數(shù)方程為 (t為參數(shù)).
(Ⅰ)寫出橢圓C的普通方程和直線l的傾斜角;
(Ⅱ)若點P(1,2),設直線l與橢圓C相交于A,B兩點,求|PA|·|PB|的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】是公差不為零的等差數(shù)列,滿足數(shù)列的通項公式為

1)求數(shù)列的通項公式;

2將數(shù)列,中的公共項按從小到大的順序構成數(shù)列,請直接寫出數(shù)列的通項公式;

3,是否存在正整數(shù) ,使得成等差數(shù)列?若存在,求出的值;若不存在,請說明理由

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在如圖所示的多面體中, 平面 , , , , , , 的中點.

(1)求證: 平面
(2)求二面角 的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知各項不為零的數(shù)列{an}的前n項和為Sn , 且a1=1,Sn=panan+1(n∈N*),p∈R.
(1)若a1 , a2 , a3成等比數(shù)列,求實數(shù)p的值;
(2)若a1 , a2 , a3成等差數(shù)列,
①求數(shù)列{an}的通項公式;
②在an與an+1間插入n個正數(shù),共同組成公比為qn的等比數(shù)列,若不等式(qnn+1)(n+a≤e對任意的n∈N*恒成立,求實數(shù)a的最大值.

查看答案和解析>>

同步練習冊答案