在平面上,用一條直線截正方形的一個角,則截下一個直角三角形按下圖所標邊長,由勾股定理得c2=a2+b2.設(shè)想正方形換成正方體,把截線換成如圖的截面,這時從正方體上截下正方體的“一個角”三條側(cè)棱兩兩垂直的三棱錐O-ABC,若用s1,s2,s3表示三個側(cè)面面積,s4表示截面面積,你類比得到s1,s2,s3,s4之間的關(guān)系式為
 

考點:類比推理
專題:解題方法,演繹法,推理和證明
分析:從平面圖形到空間圖形,同時模型不變.
解答: 解:建立從平面圖形到空間圖形的類比,于是作出猜想:S42=S12+S22+S32
故答案為:S42=S12+S22+S32
點評:本題題主要考查學生的知識量和知識遷移、類比的基本能力.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系xoy中,P(x0,y0)是橢圓C:
x2
6
+
y2
2
=1上任意一點,F(xiàn)是橢圓C的左焦點,直線l的方程為x0x+3y0y-6=0.
(1)求證:直線l與橢圓C有唯一公共點;
(2)設(shè)點Q與點F關(guān)于直線l對稱,當點P在橢圓上運動時,判斷直線PQ是否過定點,若直線PQ過定點,求出此定點的坐標;若直線PQ不過定點,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=cos(2x+
π
3
)+cos2
π
2
+x
).
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間.
(2)△ABC中,角A、B、C所對的邊分別是a、b、c,且f(
c
2
)=-
1
4
,邊c=2,∠C為銳角,△ABC的內(nèi)切圓半徑為
3
3
,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)集合A={x|x2-4x-12>0},B={x||x-3|<a},且-3∈B,則A∪B=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

當對數(shù)logx-1(5+4x)有意義時,x的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

1
1+x2
=a0+a1x+a2x2+a3x3+…+anxn+…,則a3=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

經(jīng)過點(2,-3)且與橢圓9x2+y2=36共焦點的橢圓方程為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖是甲,乙兩名同學5次綜合測評成績的莖葉圖,則乙的成績的中位數(shù)是
 
,甲乙兩人中成績較為穩(wěn)定的是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某幾何體的俯視圖是正方形,則該幾何體不可能是( 。
A、圓柱B、圓錐
C、三棱柱D、四棱柱

查看答案和解析>>

同步練習冊答案