(2013•寧波二模)在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,設(shè)函數(shù)f(x)=cosx•cos(x-A)-
1
2
cosA
(x∈R).
(Ⅰ)求函數(shù)f(x)的最小正周期和最大值;
(Ⅱ)若函數(shù)f(x)在x=
π
3
處取得最大值,求
a(cosB+cosC)
(b+c)sinA
的值.
分析:(Ⅰ)利用兩角和差的正弦公式、余弦公式化簡函數(shù)f(x)的解析式為
1
2
cos(2x-A)
,由此可求它的最大值.
(Ⅱ)由( I)知:由
3
-A=2kπ,k∈Z
,求得A的值,再利用正弦定理及兩角和差的正弦公式、余弦公式,化簡要求的式子,求得結(jié)果.
解答:解:(Ⅰ)依題意得f(x)=cos2xcosA+cosxsinxsinA-
1
2
cosA
…(2分)
=
1
2
(cos2x•cosA+sin2x•sinA)
=
1
2
cos(2x-A)
,…(5分)
所以T=π,(f(x))max=
1
2
.…(7分)
(Ⅱ)由( I)知:由
3
-A=2kπ,k∈Z
,得A=
3
-2kπ∈(0,π)
,
所以A=
3

a(cosB+cosC)
(b+c)sinA
=
cosB+cosC
sinB+sinC
=
cos(
π
3
-C)+cosC
sin(
π
3
-C)+sinC
=
3
2
cosC+
3
2
sinC
3
2
cosC+
1
2
sinC
=
3
.…(14分)
點(diǎn)評(píng):本題主要考查兩角和差的正弦公式、余弦公式,正弦定理以及二倍角公式的應(yīng)用,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•寧波二模)設(shè)公比大于零的等比數(shù)列{an}的前n項(xiàng)和為Sn,且a1=1,S4=5S2,數(shù)列{bn}的前n項(xiàng)和為Tn,滿足b1=1,Tn=n2bn,n∈N*
(Ⅰ)求數(shù)列{an}、{bn}的通項(xiàng)公式;
(Ⅱ)設(shè)Cn=(Sn+1)(nbn-λ),若數(shù)列{Cn}是單調(diào)遞減數(shù)列,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•寧波二模)設(shè)函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),對(duì)任意x∈R都有f′(x)>f(x)成立,則( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•寧波二模)已知函數(shù)f(x)=a(x-1)2+lnx.a(chǎn)∈R.
(Ⅰ)當(dāng)a=-
1
4
時(shí),求函數(shù)y=f(x)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)x∈[1,+∞)時(shí),函數(shù)y=f(x)圖象上的點(diǎn)都在不等式組
x≥1
y≤x-1
所表示的區(qū)域內(nèi),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•寧波二模)如圖是某學(xué)校抽取的n個(gè)學(xué)生體重的頻率分布直方圖,已知圖中從左到右的前3個(gè)小組的頻率之比為1:2:3,第3個(gè)小組的頻數(shù)為18,則的值n是
48
48

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•寧波二模)已知兩非零向量
a
b
,則“
a
b
=|
a
||
b
|”是“
a
b
共線”的( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案