精英家教網 > 高中數學 > 題目詳情

【題目】如圖,已知橢圓的左頂點,且點在橢圓上, 、分別是橢圓的左、右焦點。過點作斜率為的直線交橢圓于另一點,直線交橢圓于點.

1)求橢圓的標準方程;

2)若為等腰三角形,求點的坐標;

3)若,求的值.

【答案】123

【解析】試題分析:(1)依據題設條件建立方程組進行求解;(2)依據題設條件建立直線的方程,然后聯(lián)立方程組求解;(3)先建立直線的方程,再與橢圓方程聯(lián)立,求出點的坐標;然后建立的方程,與的方程聯(lián)立,求出點的坐標,借助點在橢圓上建立方程進行求解

解:(1)由題意得 ,解得

橢圓的標準方程:

2 為等腰三角形,且 直線的方程,由

3)設直線的方程,

, 不垂直;

, ,

直線的方程,直線的方程:

解得

又點在橢圓上得,即,即

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知A、B、C為△ABC的三個內角,且其對邊分別為a、b、c,若cosBcosC﹣sinBsinC=
(1)求角A;
(2)若a=2 ,b+c=4,求△ABC的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知如圖所示的程序框圖

(1)當輸入的x為2,﹣1時,分別計算輸出的y值,并寫出輸出值y關于輸入值x的函數關系式;
(2)當輸出的結果為4時,求輸入的x的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列四個命題中,正確的有( ) ①兩個變量間的相關系數r越小,說明兩變量間的線性相關程度越低;
②命題“x∈R,使得x2+x+1<0”的否定是:“對x∈R,均有x2+x+1>0”;
③命題“p∧q為真”是命題“p∨q為真”的必要不充分條件;
④若函數f(x)=x3+3ax2+bx+a2在x=﹣1有極值0,則a=2,b=9或a=1,b=3.
A.0 個
B.1 個
C.2 個
D.3個

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】現有甲、乙兩個靶.某射手向甲靶射擊一次,命中的概率為 ,命中得1分,沒有命中得0分;向乙靶射擊兩次,每次命中的概率為 ,每命中一次得2分,沒有命中得0分.該射手每次射擊的結果相互獨立.假設該射手完成以上三次射擊. (Ⅰ)求該射手恰好命中一次得的概率;
(Ⅱ)求該射手的總得分X的分布列及數學期望EX.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|< )的部分圖象如圖所示

(1)求函數f(x)的解析式;
(2)分析該函數是如何通過y=sinx變換得來的?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】有一組數據:1,1,4,5,5,5,則這組數據的眾數和中位數分別是(
A.5和4
B.5和4.5
C.5和5
D.1和5

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】(本小題滿分12分) 某中學的環(huán)保社團參照國家環(huán)境標準制定了該校所在區(qū)域空氣質量指數與空氣質量等級對應關系如下表(假設該區(qū)域空氣質量指數不會超過):

空氣質量指數

空氣質量等級

級優(yōu)

級良

級輕度污染

級中度污染

級重度污染

級嚴重污染

該社團將該校區(qū)在天的空氣質量指數監(jiān)測數據作為樣本,繪制的頻率分布直方圖如下圖,把該直方圖所得頻率估計為概率

請估算年(以天計算)全年空氣質量優(yōu)良的天數(未滿一天按一天計算);

)該校、日將作為高考考場,若這兩天中某天出現級重度污染,需要凈化空氣費用元,出現級嚴重污染,需要凈化空氣費用元,記這兩天凈化空氣總費用為元,求的分布列及數學期望

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】從某小學隨機抽取100名同學,將他們的身高(單位:厘米)數據繪制成頻率分布直方圖由圖中數據可知身高在[120,130]內的學生人數為( )

A.20
B.25
C.30
D.35

查看答案和解析>>

同步練習冊答案