已知等差數(shù)列{an}的前n項和為,若,則=            
72
,
點評:考察等差數(shù)列的通項公式、求和公式及性質(zhì)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分13分)
設(shè)數(shù)列滿足為實數(shù)
(Ⅰ)證明:對任意成立的充分必要條件是;
(Ⅱ)設(shè),證明:;
(Ⅲ)設(shè),證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分13分)隨著石油資源的日益緊缺,我國決定建立自己的石油儲備基地,
已知某石油儲備基地原儲有石油噸,按計劃正式運營后的第一年進(jìn)油量為已儲油量的25%,以后每年的進(jìn)油量均為上一年底儲油量的25%,且每年年內(nèi)用出噸,設(shè)為正式運營后第年年底的石油儲量.(Ⅰ)求、、;                                  (Ⅱ)猜測出的表達(dá)式并用數(shù)學(xué)歸納法予以證明;(Ⅲ)為抵御突發(fā)事件,該油庫年底儲油量不得少于噸,如果噸,該油庫能否長期按計劃運營?如果能,請加以證明;如果不能,請說明理由.(計算中可供參考的數(shù)據(jù):,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(文)數(shù)列{an}中a1=0,,(1)求證數(shù)列為等差數(shù)列,并求出公差;(2)設(shè)數(shù)列{an}的前n項和為Sn,證明Sn<n-ln(n+1);(3)設(shè),證明:對任意正整數(shù)n,m,都有.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,將一個邊長為1的正三角形的每條邊三等份,以中間一段為邊向形外作正三角形,并擦去中間一段,得圖(2).如此繼續(xù)下去,得圖(3)…….
 
試探究:第n個圖形的邊數(shù)    .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
設(shè)數(shù)列滿足,.?dāng)?shù)列滿足,是非零整數(shù),且對任意的正整數(shù)和自然數(shù),都有
(1)求數(shù)列的通項公式;
(2)記,求數(shù)列的前項和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分16滿分)設(shè)正項數(shù)列的前項和為,為非零常數(shù).已知對任意正整數(shù),當(dāng)時,總成立.
(1)證明:數(shù)列是等比數(shù)列;(2) 若正整數(shù)成等差數(shù)列,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)已知數(shù)列的各項均是正數(shù),其前項和為,滿足,其中為正常數(shù),且(1)求數(shù)列的通項公式;(2)設(shè),數(shù)列的前項和為,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知數(shù)列{an}為等差數(shù)列,且a1+a7+a13=4π,則tana7=(  )
A.
3
B.-
3
C.±
3
D.-
3
3

查看答案和解析>>

同步練習(xí)冊答案