已知橢圓的離心率為,且過(guò)點(diǎn),過(guò)的右焦點(diǎn)任作直線,設(shè),兩點(diǎn)(異于的左、右頂點(diǎn)),再分別過(guò)點(diǎn)的切線,,記相交于點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)證明:點(diǎn)在一條定直線上.
(1);(2).
(1)根據(jù)離心率和b,可求出a,c的值.
(2) 解本題的關(guān)鍵是,
=……=
然后借助韋達(dá)定理解決即可.
解:(1)由題意,得,,…2分 
,                  ………4分                
解得,,             ………5分
故橢圓的標(biāo)準(zhǔn)方程為;………6分  
(2)當(dāng)橢圓上的點(diǎn)軸上方,即時(shí),,
,            ………………………8分
再由橢圓的對(duì)稱性,當(dāng)點(diǎn)軸下方,,即時(shí),仍有.
因此橢圓在點(diǎn)的切線的斜率.     …………………10分
①當(dāng)直線軸時(shí),,從而切線的方程分別為
,,則點(diǎn);   ……………11分
②當(dāng)直線存在斜率時(shí),設(shè),
,消去,得
,.                             ……………13分
于是


從而方程可化為,而,所以.

即點(diǎn)的橫坐標(biāo)恒為,這表明點(diǎn)恒在直線上.            ………………15分.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知在△ABC中,B、C坐標(biāo)分別為B (0,-4),C (0,4),且,頂點(diǎn)A
的軌跡方程是(      )
(A)x≠0)                (B)x≠0)   
(C)x≠0)                 (D)x≠0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分16分)
如圖,橢圓的右焦點(diǎn)為,右準(zhǔn)線為,

(1)求到點(diǎn)和直線的距離相等的點(diǎn)的軌跡方程。
(2)過(guò)點(diǎn)作直線交橢圓于點(diǎn),又直線于點(diǎn),若,
求線段的長(zhǎng);
(3)已知點(diǎn)的坐標(biāo)為,直線交直線于點(diǎn),且和橢圓的一個(gè)交點(diǎn)為點(diǎn),是否存在實(shí)數(shù),使得,若存在,求出實(shí)數(shù);若不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓:的右焦點(diǎn)與拋物線的焦點(diǎn)相同,且的離心率,又為橢圓的左右頂點(diǎn),其上任一點(diǎn)(異于).
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線交直線于點(diǎn),過(guò)作直線的垂線交軸于點(diǎn),求的坐標(biāo);
(Ⅲ)求點(diǎn)在直線上射影的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知為橢圓的左、右焦點(diǎn),是坐標(biāo)原點(diǎn),過(guò)作垂直于軸的直線交橢圓于.
(Ⅰ)求橢圓的方程;
(Ⅱ)過(guò)左焦點(diǎn)的直線與橢圓交于、兩點(diǎn),若,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知A、D分別為橢圓E的左頂點(diǎn)與上頂點(diǎn),橢圓的離心率F、F2為橢圓的左、右焦點(diǎn),點(diǎn)P是線段AD上的任一點(diǎn),且的最大值為1 .
(1)求橢圓E的方程;
(2)是否存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與橢圓E恒有兩個(gè)交點(diǎn)A,B,且OAOBO為坐標(biāo)原點(diǎn)),若存在,求出該圓的方程;若不存在,請(qǐng)說(shuō)明理由;
(3)設(shè)直線l與圓相切于A1,且l與橢圓E有且僅有一個(gè)公共點(diǎn)B1,當(dāng)R為何值時(shí),|A1B1|取得最大值?并求最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的左、右焦點(diǎn)分別為,它的一條準(zhǔn)線為,過(guò)點(diǎn)的直線與橢圓交于、兩點(diǎn).當(dāng)軸垂直時(shí),.
(1)求橢圓的方程;
(2)若,求的內(nèi)切圓面積最大時(shí)正實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知,點(diǎn)所在的平面內(nèi)運(yùn)動(dòng)且保持,則的最大值和最小值分別是(   )
A. B.10和2  C.5和1D.6和4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知圓C過(guò)點(diǎn)(1,0),且圓心在x軸的正半軸上,直線l:y=x-1被圓C所截得的弦長(zhǎng)為.
(1)求過(guò)圓心且與直線l垂直的直線m方程;
(2)點(diǎn)P在直線m上,求以A(-1,0),B(1,0)為焦點(diǎn)且過(guò)P點(diǎn)的長(zhǎng)軸長(zhǎng)最小的橢圓的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案