若點A的坐標為(3,2),F(xiàn)為拋物線y2=2x的焦點,點P是拋物線上的一動點,則|PA|+|PF|取得最小值時點P的坐標是(  )
A.(0,0)B.(1,1)C.(2,2)D.(
1
2
,1)
根據(jù)題意,作圖如下,

設(shè)點P在其準線x=-
1
2
上的射影為M,有拋物線的定義得:|PF|=|PM|,
∴欲使|PA|+|PF|取得最小值,就是使|PA|+|PM|最小,
∵|PA|+|PM|≥|AM|(當且僅當M,P,A三點共線時取“=”),
∴|PA|+|PF|取得最小值時(M,P,A三點共線時)點P的縱坐標y0=2,設(shè)其橫坐標為x0,
∵P(x0,2)為拋物線y2=2x上的點,
∴x0=2,
∴點P的坐標為P(2,2).
故選C.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:填空題

過拋物線y2=4x的焦點,方向向量為(1,
3
)
的直線方程是______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

下列說法中,正確的有______.
①若點P(x0,y0)是拋物線y2=2px上一點,則該點到拋物線的焦點F的距離是|PF|=x0+
P
2

②方程x2+y2-2x+1=0表示的圖形是圓;
③設(shè)定圓O上有一動點A,圓O內(nèi)一定點M,AM的垂直平分線與半徑OA的交點為點P,則P的軌跡為一橢圓;
④某工廠甲、乙、丙三個車間生產(chǎn)了同一種產(chǎn)品,數(shù)量分別為120件,80件,60件.為了解它們的產(chǎn)品質(zhì)量是否存在顯著差異,用分層抽樣方法抽取了一個容量為n的樣本進行調(diào)查,其中從丙車間的產(chǎn)品中抽取了3件,則n=13;
⑤雙曲線
y2
49
-
x2
25
=-1的漸近線方程是y=±
5
7
x.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若拋物線y2=4x的準線也是雙曲線
x2
a2
-
4y2
3
=1
的一條準線,則該雙曲線的漸近線方程為( 。
A.y=±2xB.y=±
2
2
x
C.y=±
3
x
D.y=±
2
x

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

當a為任意實數(shù)時,直線ax+y-8=0恒過定點P,則以點P為焦點的拋物線的標準方程是( 。
A.y2=32xB.x2=32yC.y2=-32xD.x2=-32y

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知等邊三角形的一個頂點在坐標原點,另外兩個頂點在拋物線y2=2x上,則該三角形的面積是______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知拋物線C:y2=2px(p>0),M點的坐標為(12,8),N點在拋物線C上,且滿足
ON
=
3
4
OM
,O為坐標原點.則拋物線C的方程______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,河道上有一座拋物線型拱橋,在正常水位時,拱圈最高點距水面為8m,拱圈內(nèi)水面寬16m.,為保證安全,要求通過的船頂部(設(shè)為平頂)與拱橋頂部在豎直方向上高度之差至少要有0.5m.
(1)一條船船頂部寬4m,要使這艘船安全通過,則船在水面以上部分高不能超過多少米?
(2)近日因受臺風影響水位暴漲2.7m,為此必須加重船載,降低船身,才能通過橋洞.試問:一艘頂部寬4
2
m,在水面以上部分高為4m的船船身應至少降低多少米才能安全通過?

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知拋物線C:的焦點為F,準線為,P是上一點,Q是直線PF與C得一個焦點,若,則(     )
A.B.C.D.

查看答案和解析>>

同步練習冊答案