設函數(shù),對任意,不等式恒成立,則正數(shù)的取值范圍是       

 

【答案】

【解析】

試題分析:因為,當x>0時,=e2x+≥2=2e

所以x1∈(0,+∞)時,函數(shù)f(x1)有最小值2e

因為,g(x)=,所以,

當x<1時,g′(x)>0,則函數(shù)g(x)在(0,1)上單調(diào)遞增

當x>1時,g′(x)<0,則函數(shù)在(1,+∞)上單調(diào)遞減

∴x=1時,函數(shù)g(x)有最大值g(1)=e

則有x1、x2∈(0,+∞),f(x1min=2e>g(x2max=e

又因為,恒成立且k>0

所以,,所以,k≥1,故答案為k≥1。

考點:本題主要考查利用導數(shù)研究函數(shù)的單調(diào)性,均值定理的應用。

點評:中檔題,解答本題的關鍵是認識到,由恒成立且k>0,

確定,將問題轉(zhuǎn)化成求函數(shù)的最值問題。本題難度較大。

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(1)設函數(shù)f(x)=x2-1,對任意x∈[
3
2
,+∞),f(
x
m
)-4m2f(x)≤f(x-1)+4f(m)
恒成立,則實數(shù)m的取值范圍是
(-∞,-
3
2
]∪[
3
2
,+∞)
(-∞,-
3
2
]∪[
3
2
,+∞)

(2)函數(shù)f(x)=
2-x-1(x≤0)
f(x-1),(x>0)
,若方程f(x)=x+a恰有兩個不等的實根,則a的取值范圍是
(-∞,1]
(-∞,1]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(A類)已知函數(shù)g(x)=(a+1)x-2+1(a>0)的圖象恒過定點A,且點A又在函數(shù)f(x)=log
3
(x+a)的圖象上.
(1)求實數(shù)a的值;                (2)解不等式f(x)<log
3
a;
(3)|g(x+2)-2|=2b有兩個不等實根時,求b的取值范圍.
(B類)設f(x)是定義在R上的函數(shù),對任意x,y∈R,恒有f(x+y)=f(x)+f(y)
(1)求f(0)的值;     (2)求證:f(x)為奇函數(shù);
(3)若函數(shù)f(x)是R上的增函數(shù),已知f(1)=1,且f(2a)>f(a-1)+2,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(A類)已知函數(shù)g(x)=(a+1)x-2+1(a>0)的圖象恒過定點A,且點A又在函數(shù)f(x)=數(shù)學公式(x+a)的圖象上.
(1)求實數(shù)a的值;       。2)解不等式f(x)<數(shù)學公式a;
(3)|g(x+2)-2|=2b有兩個不等實根時,求b的取值范圍.
(B類)設f(x)是定義在R上的函數(shù),對任意x,y∈R,恒有f(x+y)=f(x)+f(y)
(1)求f(0)的值;   (2)求證:f(x)為奇函數(shù);
(3)若函數(shù)f(x)是R上的增函數(shù),已知f(1)=1,且f(2a)>f(a-1)+2,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(A類)已知函數(shù)g(x)=(a+1)x-2+1(a>0)的圖象恒過定點A,且點A又在函數(shù)f(x)=log
3
(x+a)的圖象上.
(1)求實數(shù)a的值;                (2)解不等式f(x)<log
3
a;
(3)|g(x+2)-2|=2b有兩個不等實根時,求b的取值范圍.
(B類)設f(x)是定義在R上的函數(shù),對任意x,y∈R,恒有f(x+y)=f(x)+f(y)
(1)求f(0)的值;     (2)求證:f(x)為奇函數(shù);
(3)若函數(shù)f(x)是R上的增函數(shù),已知f(1)=1,且f(2a)>f(a-1)+2,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題分A,B類,滿分12分,任選一類,若兩類都選,以A類記分)

(A類)已知函數(shù)的圖象恒過定點,且點又在函

數(shù)的圖象.

(1)求實數(shù)的值;                (2)解不等式

(3)有兩個不等實根時,求的取值范圍.

(B類)設是定義在上的函數(shù),對任意,恒有

.

⑴求的值;     ⑵求證:為奇函數(shù);

⑶若函數(shù)上的增函數(shù),已知,求

取值范圍.

查看答案和解析>>

同步練習冊答案