【題目】已知函數(shù), .

(1)設(shè)函數(shù),若在區(qū)間上單調(diào),求實(shí)數(shù)的取值范圍;

(2)求證: .

【答案】(1)的取值范圍為 (2)證明見解析

【解析】試題分析:1)求出函數(shù)的導(dǎo)數(shù),問題轉(zhuǎn)化為上恒成立,求出m的范圍即可;2)設(shè)g(x)=f2(x)-f3(x)-2f1′(x)=ex-lnx-2,求出函數(shù)的導(dǎo)數(shù),得到函數(shù)的單調(diào)性,求出gx)的最小值,從而證出結(jié)論.

試題解析:(1)由題意得,所以,因?yàn)?/span>

所以

若函數(shù)在區(qū)間上單調(diào)遞增,則上恒成立,即上恒成立,所以

若函數(shù)在區(qū)間上單調(diào)遞減,則上恒成立,

上恒成立,所以

綜上,實(shí)數(shù)的取值范圍為.

(2)設(shè)

,設(shè),則,所以上單調(diào)遞增,

, 得,存在唯一的使得,

所以在上有,在上有

所以上單調(diào)遞減,在遞增.

所以,故, .

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 )的離心率為,以橢圓的四個(gè)頂點(diǎn)為頂點(diǎn)的四邊形的面積為8.

(Ⅰ)求橢圓的方程;

(Ⅱ)如圖,斜率為的直線與橢圓交于, 兩點(diǎn),點(diǎn)在直線的左上方.若,且直線, 分別與軸交于 點(diǎn),求線段的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是橢圓的左、右焦點(diǎn), 為坐標(biāo)原點(diǎn),點(diǎn)在橢圓上,線段軸的交點(diǎn)滿足

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)圓是以為直徑的圓,一直線與圓相切,并與橢圓交于不同的兩點(diǎn)、,當(dāng),且滿足時(shí),求的面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某池塘養(yǎng)殖著鯉魚和鯽魚,為了估計(jì)這兩種魚的數(shù)量,養(yǎng)殖者從池塘中捕出這兩種魚各1 000,給每條魚做上不影響其存活的標(biāo)記,然后放回池塘,待完全混合后,再每次從池塘中隨機(jī)地捕出1 000條魚,記錄下其中有記號(hào)的魚的數(shù)目,立即放回池塘中.這樣的記錄做了10,并將記錄獲取的數(shù)據(jù)制作成如圖所示的莖葉圖.

(1)根據(jù)莖葉圖計(jì)算有記號(hào)的鯉魚和鯽魚數(shù)目的平均數(shù),并估計(jì)池塘中的鯉魚和鯽魚的數(shù)量;

(2)為了估計(jì)池塘中魚的總質(zhì)量,現(xiàn)按照(1)中的比例對(duì)100條魚進(jìn)行稱重,根據(jù)稱重魚的質(zhì)量介于[0,4.5](單位:千克)之間,將測(cè)量結(jié)果按如下方式分成九組:第一組[0,0.5),第二組[0.5,1),…,第九組[4,4.5].如圖是按上述分組方法得到的頻率分布直方圖的一部分.

估計(jì)池塘中魚的質(zhì)量在3千克以上(3千克)的條數(shù);

若第三組魚的條數(shù)比第二組多7條、第四組魚的條數(shù)比第三組多7,請(qǐng)將頻率分布直方圖補(bǔ)充完整;

的條件下估計(jì)池塘中魚的質(zhì)量的眾數(shù)及池塘中魚的總質(zhì)量.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)用定義證明函數(shù)上是增函數(shù);

(2)探究是否存在實(shí)數(shù)使得函數(shù)為奇函數(shù)?若存在,求出的值;若不存在,請(qǐng)說明理由;

3)在(2)的條件下,解不等式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】是等邊三角形,邊長(zhǎng)為4, 邊的中點(diǎn)為,橢圓 為左、右兩焦點(diǎn),且經(jīng)過、兩點(diǎn)。

(1)求該橢圓的標(biāo)準(zhǔn)方程;

(2)過點(diǎn)軸不垂直的直線交橢圓于 兩點(diǎn),求證:直線的交點(diǎn)在一條定直線上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在某次電影展映活動(dòng)中,展映的影片有科幻片和文藝片兩種類型,統(tǒng)計(jì)一隨機(jī)抽樣調(diào)查的樣本數(shù)據(jù)顯示,100名男性觀眾中選擇科幻片的有60名,女性觀眾中有的選擇文藝片,選擇文藝片的觀眾中男性觀眾和女性觀眾一樣多.

(Ⅰ)根據(jù)以上數(shù)據(jù)完成下列列聯(lián)表

(Ⅱ)能否在犯錯(cuò)誤的概率不超過0.01的前提下,認(rèn)為選擇影片類型與性別有關(guān)?

附:

0.10

0.05

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖(1)是一個(gè)水平放置的正三棱柱, 是棱的中點(diǎn),正三棱柱的主視圖如圖(2).

(1)圖(1)中垂直于平面的平面有哪幾個(gè)(直接寫出符合要求的平面即可,不必說明或證明)

(2)求正三棱柱的體積;

(3)證明: 平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,直線的參數(shù)方程是為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),以軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程是.

(1)求直線的普通方程和曲線的直角坐標(biāo)方程;

(2)設(shè)點(diǎn),若直線與曲線交于 兩點(diǎn),且,求實(shí)數(shù)的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案