【題目】在某次電影展映活動中,展映的影片有科幻片和文藝片兩種類型,統(tǒng)計一隨機抽樣調查的樣本數(shù)據(jù)顯示,100名男性觀眾中選擇科幻片的有60名,女性觀眾中有的選擇文藝片,選擇文藝片的觀眾中男性觀眾和女性觀眾一樣多.

(Ⅰ)根據(jù)以上數(shù)據(jù)完成下列列聯(lián)表

(Ⅱ)能否在犯錯誤的概率不超過0.01的前提下,認為選擇影片類型與性別有關?

附:

0.10

0.05

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

【答案】(Ⅰ)見解析;(Ⅱ)見解析.

【解析】試題分析:(Ⅰ)根據(jù)已知條件直接完成 列聯(lián)表即可.
(Ⅱ)根據(jù)表中數(shù)據(jù)計算 ,然后判斷“觀影類型與性別有關”.

試題解析:(Ⅰ)觀看文藝片的男性觀眾有人,所以觀看文藝片的女性觀眾有40人,女性觀眾共有人.得到列聯(lián)表如下:

(Ⅱ)由(Ⅰ)中列聯(lián)表的數(shù)據(jù)可得, .

因為,所以能在犯錯誤的概率不超過0.01的前提下,認為選擇影片類型與性別有關.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】2016年時紅軍長征勝利80周年,某市電視臺舉辦紀念紅軍長征勝利80周年知識問答,宣傳長征精神.首先在甲、乙、丙、丁四個不同的公園進行支持簽名活動,其次在各公園簽名的人中按分層抽樣的方式抽取10名幸運之星,每人獲得一個紀念品,其數(shù)據(jù)表格如下:

公園

獲得簽名人數(shù)

45

60

30

15

(Ⅰ)求此活動中各公園幸運之星的人數(shù);

(Ⅱ)從乙和丙公園的幸運之星中任選兩人接受電視臺記者的采訪,求這兩人均來自乙公園的概率;

(Ⅲ)電視臺記者對乙公園的簽名人進行了是否有興趣研究“紅軍長征”歷史的問卷調查,統(tǒng)計結果如下(單位:人):

有興趣

無興趣

合計

25

5

30

15

15

30

合計

40

20

60

據(jù)此判斷能否在犯錯誤的概率不超過0.01的前提下認為有興趣研究“紅軍長征”歷史與性別有關.

臨界值表:

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

參考公式:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我國古代數(shù)學名著《續(xù)古摘奇算法》(楊輝著)一書中有關于三階幻方的問題:將1, 2, 3, 4, 5, 6, 7, 8, 9分別填入的方格中,使得每一行,每一列及對角線上的三個數(shù)的和都相等 (如圖所示),我們規(guī)定:只要兩個幻方的對應位置(如每行第一列的方格)中的數(shù)字不全相同,就稱為不同的幻方,那么所有不同的三階幻方的個數(shù)是__________.

8

3

4

1

5

9

6

7

2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù), .

(1)設函數(shù),若在區(qū)間上單調,求實數(shù)的取值范圍;

(2)求證: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中, 平面,四邊形是菱形, ,且 交于點, 上任意一點.

(1)求證: ;

(2)已知二面角的余弦值為,若的中點,求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】現(xiàn)有一張長為,寬為)的長方形鐵皮,準備用它做成一個無蓋長方體鐵皮容器,要求材料利用率為100%,不考慮焊接處損失.如圖,在長方形的一個角上剪下一塊邊長為的正方形鐵皮,作為鐵皮容器的底面,用余下材料剪拼后作為鐵皮容器的側面,設長方體的高為,體積為.

(Ⅰ)求關于的函數(shù)關系式;

(Ⅱ)求該鐵皮容器體積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在直角坐標系中,直線的方程是,圓的參數(shù)方程是為參數(shù)),以原點為極點, 軸的非負半軸為極軸建立極坐標系.

(1)分別求直線和圓的極坐標方程;

(2)射線(其中)與圓交于兩點,與直線交于點,射線與圓交于兩點,與直線交于點,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某廠生產某種產品的月固定成本為10(萬元),每生產件,需另投入成本為(萬元).當月產量不足30件時, (萬元);當月產量不低于30件時, (萬元).因設備問題,該廠月生產量不超過50件.現(xiàn)已知此商品每件售價為5萬元,且該廠每個月生產的商品都能當月全部銷售完.

(1)寫出月利潤(萬元)關于月產量(件)的函數(shù)解析式;

(2)當月產量為多少件時,該廠所獲月利潤最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù), .

(1)求函數(shù)的極值;

(2)當時,若直線 與曲線沒有公共點,求的取值范圍.

查看答案和解析>>

同步練習冊答案