【題目】如圖在四棱錐中底面為直角梯形,,,側(cè)面為正三角形且平面底面,,分別為的中點.
(1)證明:平面;
(2)求與平面所成角的正弦值.
【答案】(1)證明見解析;(2)
【解析】
(1)首先取中點,連接,再證明平面平面,根據(jù)面面平行的性質(zhì)即可證明平面.
(2)首先取中點,連接,根據(jù)平面底面得到底面,以為坐標原點,,,分別為,,軸建立空間直角坐標系,再利用空間向量計算與平面所成角即可.
(1)如圖所示:
取中點,連接,
因為為中位線,
所以,
因為平面,所以平面.
因為,
又因為,所以.
所以四邊形為平行四邊形,
所以,
因為平面,所以平面.
因為平面,平面,,
所以平面平面.
因為平面,平面,
所以平面.
(2)取中點,連接.
因為,所以.
因為平面底面,
所以底面.
以為坐標原點,,,分別為,,軸建立空間直角坐標系,
如圖所示:
設(shè),,,,
,,.
所以,,,
設(shè)平面的一個法向量為,
則,即,
可取,解得,.
則,
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正項數(shù)列,滿足:對任意正整數(shù),都有,,成等差數(shù)列,,,成等比數(shù)列,且,.
(Ⅰ)求證:數(shù)列是等差數(shù)列;
(Ⅱ)求數(shù)列,的通項公式;
(Ⅲ)設(shè)=++…+,如果對任意的正整數(shù),不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在多面體ABCDEF中,底面ABCD是正方形,梯形底面ABCD,且.
(Ⅰ)證明:平面平面;
(Ⅱ)求直線AF與平面CDE所成角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某產(chǎn)品的包裝紙可類比如圖所示的平面圖形,其可看作是由正方形和等腰梯形拼成,已知,,在包裝的過程中,沿著將正方形折起,直至,得到多面體,分別為中點.
(1)證明:平面;
(2)求四棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為抗擊新冠疫情,某企業(yè)組織員工進行用款捐物的愛心活動.原則上每人以自愿為基礎(chǔ),捐款不超過400元.現(xiàn)項目負責(zé)人統(tǒng)計全體員工數(shù)據(jù)后,下表為隨機抽取的10名員工.的捐款數(shù)額.
員工編號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
捐款數(shù)額 | 124 | 86 | 215 | 53 | 132 | 195 | 400 | 90 | 300 | 225 |
(1)若從這10名員工中任意選取3人,記選到的3人中捐款數(shù)額大于200元的人數(shù)為X,求X的分布列和數(shù)學(xué)期望:
(2)以表中選取的10人作為樣本.估計該企業(yè)全體員工的捐款情況,現(xiàn)從企業(yè)員工中依次抽取8人,若抽到k人的捐款數(shù)額小于200元的可能性最大,求k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)令,若曲線在點處的切線的縱截距為,求的值;
(2)設(shè),若方程在區(qū)間內(nèi)有且只有兩個不相等的實數(shù)根,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com