【題目】已知函數(shù) .
(1)判斷函數(shù)的奇偶性;
(2)求證:函數(shù)在為單調(diào)增函數(shù);
(3)求滿足的的取值范圍.
【答案】(1)為奇函數(shù);(2)證明見解析;(3).
【解析】試題分析:(Ⅰ)求出定義域為{x|x≠0且x∈R},關(guān)于原點對稱,再計算f(-x),與f(x)比較即可得到奇偶性;
(Ⅱ)運用單調(diào)性的定義,注意作差、變形、定符號、下結(jié)論等步驟;
(Ⅲ)討論x>0,x<0,求出f(x)的零點,再由單調(diào)性即可解得所求取值范圍.
試題解析:
(1)定義域為{x|x≠0且x∈R},關(guān)于原點對稱,
,所以為奇函數(shù);
(2)任取,
所以在為單調(diào)增函數(shù);
(3)解得,所以零點為,
當時,由(2)可得的的取值范圍為, 的的取值范圍為,又該函數(shù)為奇函數(shù),所以當時,由(2)可得的的取值范圍為,
綜上:所以 解集為.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知AB⊥BC,AB=BC=a,a∈[1,3],圓A是以A為圓心、半徑為2的圓,圓B是以B為圓心、半徑為1的圓,設點E、F分別為圓A、圓B上的動點, ∥(且與同向),設∠BAE=θ(θ∈[0,π]).
(I)當a= ,且θ= 時,求的值;
(Ⅱ)用a,θ表示出,并給出一組a,θ的值,使得最。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)當時,函數(shù)恰有兩個不同的零點,求實數(shù)的值;
(2)當時,
① 若對于任意,恒有,求的取值范圍;
② 若,求函數(shù)在區(qū)間上的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了得到函數(shù)y=sin(2x﹣ )的圖象,只需將函數(shù)y=sin2x的圖象上所有的點( )
A.向左平移 個單位
B.向左平移 個單位
C.向右平移 個單位
D.向右平移 個單位
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】閱讀下面材料:
根據(jù)兩角和與差的正弦公式,有
------①
------②
由①+② 得------③
令有
代入③得.
(Ⅰ)類比上述推證方法,根據(jù)兩角和與差的余弦公式,證明:
;
(Ⅱ)若的三個內(nèi)角滿足,試判斷的形狀.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線 ,焦點到準線的距離為4,過點 的直線交拋物線于 兩點.
(Ⅰ)求拋物線的方程;
(Ⅱ)如果點 恰是線段 的中點,求直線 的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù) .
(Ⅰ)求曲線 在點 處的切線方程;
(Ⅱ)若 對 恒成立,求實數(shù) 的取值范圍;
(Ⅲ)求整數(shù) 的值,使函數(shù) 在區(qū)間 上有零點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某地區(qū)某中草藥材的銷售量與年份有關(guān),下表是近五年的部分統(tǒng)計數(shù)據(jù):
年份 | 2008 | 2010 | 2012 | 2014 | 2016 |
銷售量(噸) | 114 | 115 | 116 | 116 | 114 |
(1)利用所給數(shù)據(jù)求年銷售量與年份之間的回歸直線方程;
(2)利用(1)中所求出的直線方程預測該地2018年的中草藥的銷售量.
參考公式: , .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知三點A(-1,0)、B(t,2)、C(2,1),t∈R,O為坐標原點
(I)若△ABC是∠B為直角的直角三角形,求t的值
(Ⅱ)若四邊形ABCD是平行四邊形,求的最小值
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com