【題目】已知函數(shù)().
(1)若,函數(shù)的最大值為,最小值為,求的值;
(2)當(dāng)時,函數(shù)的最大值為,求的值.
【答案】(1);(2)0.
【解析】
(1)由題意可得,由此求得a,b的值.
(2)利用整體換元法將化為二次型函數(shù),分類討論求得最大值,即可求得a值.
(1)由題意,所以時,最大,時,最小,
可得,∴;
(2)∴g(x)=f(x)+cos2x
=1+asinx+cos2x
=2+asinx﹣sin2x
2﹣(sinx-)2,
令t=sinx,
g(t)2﹣(t)2,∵t∈[,1],
分類討論:
若,即a<-2,
gmax=g()=2,故a;(舍去);
若1即﹣2≤a≤2,
gmax=g()2=2,得a=0(舍去);
若1,即a>2,
gmax=g(1)2+a-1=2,得a=1(舍去)
∴可得:a=0.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合,函數(shù)的定義域為集合.
(I)求集合.
(II)當(dāng)時,若全集,求 及;
(III)若,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f (x)=a lnx++x (a≠0).
(1)若曲線y=f (x)在點(1,f (1))處的切線與直線x-2y=0垂直,求實數(shù)a的值;
(2)討論函數(shù)f (x)的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=4cosxsin(x+)-1.
(1)求f(x)的最小正周期和單調(diào)遞減區(qū)間;
(2)將y=f(x)圖象上所有的點向右平行移動個單位長度,得到y=g(x)的圖象.若g(x)在(0,m)內(nèi)是單調(diào)函數(shù),求實數(shù)m的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】拋物線:上的點到其焦點的距離是.
(1)求的方程.
(2)過點作圓:的兩條切線,分別交于兩點,若直線的斜率是,求實數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)命題p:x∈[1,2], ﹣lnx﹣a≥0,命題q:x0∈R,使得x02+2ax0﹣8﹣6a≤0,如果命題“p或q”是真命題,命題“p且q”是假命題,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x﹣1+ (a∈R).
(1)若曲線y=f(x)在點(1,f(1))處的切線平行于x軸,求a的值;
(2)求函數(shù)f(x)的極值;
(3)當(dāng)a=1時,若直線l:y=kx﹣1與曲線y=f(x)沒有公共點,求k的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)常數(shù).
證明在上是減函數(shù),在上是增函數(shù);
當(dāng)時,求的單調(diào)區(qū)間;
對于中的函數(shù)和函數(shù),若對任意,總存在,使得成立,求實數(shù)a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某算法的算法框圖如圖所示,若將輸出的(x,y)值依次記為(x1 , y1),(x2 , y2),…,(xn , yn),…,則程序結(jié)束時,共輸出(x,y)的組數(shù)為( )
A.1006
B.1007
C.1008
D.1009
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com