甲,乙兩位同學(xué)考入某大學(xué)的同一專業(yè),已知該專業(yè)設(shè)有3個(gè)班級(jí),則他們被隨機(jī)分到同一個(gè)班級(jí)的概率為( 。
A、
1
9
B、
1
6
C、
1
3
D、
1
2
考點(diǎn):古典概型及其概率計(jì)算公式
專題:概率與統(tǒng)計(jì)
分析:由古典概型概率公式求解.
解答: 解:甲,乙兩位同學(xué)考入某大學(xué)的同一專業(yè),則他們被隨機(jī)分班的情況有3×3=9種
甲,乙兩位同學(xué)考入同一班級(jí)的情況有3種
故概率為
3
9
=
1
3

故選C.
點(diǎn)評(píng):本題考查等可能事件的概率,考查利用排列組合解決實(shí)際問(wèn)題,考查學(xué)生的計(jì)算能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知平面向量
α
,
β
α
≠0,
α
β
)滿足|
β
|=1,且
α
α
-
β
的夾角為30°,則|
α
|的取值范圍是( 。
A、(0,
2
3
3
]
B、(0,2]
C、(1,
2
3
3
]
D、(1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=lnx-1的零點(diǎn)所在的區(qū)間是( 。
A、(0,1)
B、(1,2)
C、(2,3)
D、(3,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

向量
a
b
,
c
滿足
a
+
b
+
c
=
0
,(
a
-
b
)⊥
c
,
a
b
,若|
a
|=1,則|
a
|2+|
b
|2+|
c
|2=(  )
A、1B、2C、4D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知tan(α+β)=
2
5
,tan(α-
π
6
)=
1
4
=
1
4
,那么tan(β+
π
6
)=(  )
A、
1
6
B、
3
22
C、
13
18
D、
13
22

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

解不等式:|x+1|>2-x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過(guò)正三棱錐一側(cè)棱及其外接球的球心O所作截面如圖所示,則這個(gè)正三棱錐的側(cè)面三角形的頂角為(  )
A、60°
B、90°
C、120°
D、arccos
1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下述數(shù)陣稱為“森德拉姆篩”,記為S.其特點(diǎn)是每行每列都是等差數(shù)列,第i行第j列的數(shù)記為Aij
1     4     7     10    13    …
4     8     12    16    20    …
7     12    17    22    27    …
10    16    22    28    34    …
13    20    27    34    41    …

(Ⅰ)求Aij的通項(xiàng)公式;
(Ⅱ)設(shè) S中主對(duì)角線上的數(shù)1,8,17,28,41,…組成數(shù)列{bn}.是否存在正整數(shù)p和r (1<r<p<150),使得b1,br,bp成等差數(shù)列.若存在,寫(xiě)出p,r的一組解(不必寫(xiě)出推理過(guò)程);若不存在,請(qǐng)說(shuō)明理由;
(Ⅲ)對(duì)于(2)中的數(shù)列{bn},試證不存在正整數(shù)k和m(1<k<m),使得b1,bk,bm成等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若an=(-1)n-1(4n-3),求Sn

查看答案和解析>>

同步練習(xí)冊(cè)答案