【題目】設(shè)實(shí)數(shù),整數(shù),

(1)證明:當(dāng)時(shí), ;

(2)數(shù)列滿足, ,證明: .

【答案】(Ⅰ)證明見解析;(Ⅱ)證明見解析.

【解析】試題分析; (1) 用數(shù)學(xué)歸納法證明即可
(2) 先用數(shù)學(xué)歸納法證明,著手,由 ,將求證式進(jìn)行等價(jià)轉(zhuǎn)化后即可解決,用相同的方式將 進(jìn)行轉(zhuǎn)換,設(shè)法利用已證結(jié)論證明.

試題解析;

(Ⅰ) 證:用數(shù)學(xué)歸納法證明

(1)當(dāng)時(shí), ,原不等式成立

(2)假設(shè)時(shí),不等式成立

當(dāng)時(shí),

所以時(shí),原不等式成立

綜合(1)(2),知當(dāng)時(shí),對(duì)一切整數(shù),不等式均成立…

(Ⅱ)先用數(shù)學(xué)歸納法證明。

(1)當(dāng)時(shí)由假設(shè)成立。

(2)假設(shè)時(shí),不等式成立

易知

當(dāng)時(shí)

由(Ⅰ)中的結(jié)論得

因此,即,所以當(dāng)時(shí),不等式也成立

綜合(1)(2)可得,對(duì)一切正整數(shù),不等式均成立

再由,即

綜上所述,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓 過橢圓 ()的短軸端點(diǎn), , 分別是圓與橢圓上任意兩點(diǎn),且線段長(zhǎng)度的最大值為3.

(Ⅰ)求橢圓的方程;

(Ⅱ)過點(diǎn)作圓的一條切線交橢圓, 兩點(diǎn),求的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】調(diào)查在級(jí)風(fēng)的海上航行中71名乘客的暈船情況,在男人中有12人暈船,25人不暈船,在女人中有10人暈船,24人不暈船

(1)作出性別與暈船關(guān)系的列聯(lián)表;

(2)根據(jù)此資料,能否在犯錯(cuò)誤的概率不超過0.1的前提下認(rèn)為級(jí)風(fēng)的海上航行中暈船與性別有關(guān)?

暈船

不暈船

總計(jì)

男人

女人

總計(jì)

附:.

0.25

0.15

0.10

0.05

0.025

1.323

2.072

2.706

3.841

5.024

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知每一項(xiàng)都是正數(shù)的數(shù)列滿足

(1)用數(shù)學(xué)歸納法證明: ;

(2)證明: ;

(3)記為數(shù)列的前項(xiàng)和,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), .

(Ⅰ)若函數(shù)上為減函數(shù),求的最小值;

(Ⅱ)若函數(shù)為自然對(duì)數(shù)的底數(shù)),,對(duì)于任意的,恒有成立,求的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四棱錐,底面是邊長(zhǎng)為的菱形, , 的中點(diǎn), ,

與平面所成角的正弦值為.

(1)在棱上求一點(diǎn),使平面;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中國傳統(tǒng)文化中很多內(nèi)容體現(xiàn)了數(shù)學(xué)的對(duì)稱美,如圖所示的太極圖是由黑白兩個(gè)魚形紋組成的圓形圖案,充分展現(xiàn)了相互轉(zhuǎn)化、對(duì)稱統(tǒng)一的形式美、和諧美,給出定義:能夠?qū)A的周長(zhǎng)和面積同時(shí)平分的函數(shù)稱為這個(gè)圓的優(yōu)美函數(shù),給出下列命題:

①對(duì)于任意一個(gè)圓,其優(yōu)美函數(shù)有無數(shù)個(gè)

函數(shù)可以是某個(gè)圓的優(yōu)美函數(shù);

正弦函數(shù)可以同時(shí)是無數(shù)個(gè)圓的優(yōu)美函數(shù)

函數(shù)優(yōu)美函數(shù)的充要條件為函數(shù)的圖象是中心對(duì)稱圖形.

其中正確的命題是:( )

A. ①③ B. ①③④ C. ②③ D. ①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的焦距為2,離心率.

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)過點(diǎn)作圓的切線,切點(diǎn)分別為,直線軸交于點(diǎn),過點(diǎn)作直線交橢圓兩點(diǎn),點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱中,各棱長(zhǎng)均相等, , , 分別為棱 , 的中點(diǎn).

(Ⅰ)證明: 平面

(Ⅱ)若三棱柱為直棱柱,求直線與平面所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案