已知函數(shù)f(x)="2" sin(0≤x≤5),點(diǎn)A、B分別是函數(shù)y=f(x)圖像上的最高點(diǎn)和最低點(diǎn).
(1)求點(diǎn)A、B的坐標(biāo)以及·的值;
(2)沒點(diǎn)A、B分別在角、的終邊上,求tan()的值.

(1)、.(2)。

解析試題分析:(1), ,   1分
.   2分
當(dāng),即時(shí),取得最大值;
當(dāng),即時(shí),,取得最小值. 
因此,點(diǎn)、的坐標(biāo)分別是、.      4分
.   6分
(2)點(diǎn)分別在角、的終邊上,
,,             8分
,       10分
. 12分
考點(diǎn):三角函數(shù)的圖象與性質(zhì);三角函數(shù)的定義;平面向量的數(shù)量積;和差公式。
點(diǎn)評:本題主要考查了三角函數(shù)的圖象與性質(zhì),三角函數(shù)的定義以及平面向量的數(shù)量積等基礎(chǔ)知識(shí),考查了學(xué)生簡單的數(shù)學(xué)運(yùn)算能力.我們做三角函數(shù)的大題的要求是得滿分,因此,三角函數(shù)的有關(guān)問題雖說簡單,但我們在平常也要練習(xí)到位。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(I)證明:;
(II)求不等式的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(12分)對于二次函數(shù),
(1)指出圖像的開口方向、對稱軸方程、頂點(diǎn)坐標(biāo);
(2)求函數(shù)的最值;
(3)分析函數(shù)的單調(diào)性。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
某產(chǎn)品生產(chǎn)廠家根據(jù)以往的生產(chǎn)銷售經(jīng)驗(yàn)得到下面有關(guān)生產(chǎn)銷售的統(tǒng)計(jì)規(guī)律:每生產(chǎn)產(chǎn)品x(百臺(tái)),其總成本為G(x)(萬元),其中固定成本為2.8萬元,并且每生產(chǎn)1百臺(tái)的生產(chǎn)成本為1萬元(總成本=固定成本+生產(chǎn)成本).銷售收入R(x)(萬元)滿足
,假定該產(chǎn)品產(chǎn)銷平衡(即生產(chǎn)的產(chǎn)品都能賣掉),根據(jù)上述統(tǒng)計(jì)規(guī)律,請完成下列問題:
(1)寫出利潤函數(shù)y=f(x)的解析式(利潤=銷售收入-總成本);
(2)工廠生產(chǎn)多少臺(tái)產(chǎn)品時(shí),可使盈利最多?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分13分)
專家通過研究學(xué)生的學(xué)習(xí)行為,發(fā)現(xiàn)學(xué)生的注意力隨著老師講課時(shí)間的變化而變化,講課開始時(shí),學(xué)生的興趣激增,中間有一段時(shí)間,學(xué)生的興趣保持較理想的狀態(tài),隨后學(xué)生的注意力開始分散,設(shè)表示學(xué)生注意力隨時(shí)間(分鐘)的變化規(guī)律(越大,表明學(xué)生注意力越大),經(jīng)過試驗(yàn)分析得知:
(Ⅰ)講課開始后多少分鐘,學(xué)生的注意力最集中?能堅(jiān)持多少分鐘?
(Ⅱ)講課開始后5分鐘時(shí)與講課開始后25分鐘時(shí)比較,何時(shí)學(xué)生的注意力更集中?
(Ⅲ)一道數(shù)學(xué)難題,需要講解24分鐘,并且要求學(xué)生的注意力至少達(dá)到180,那么經(jīng)過適當(dāng)安排,老師能否在學(xué)生達(dá)到所需的狀態(tài)下講完這道題目?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分16分)
已知,,且直線與曲線相切.
(1)若對內(nèi)的一切實(shí)數(shù),不等式恒成立,求實(shí)數(shù)的取值范圍;
(2)當(dāng)時(shí),求最大的正整數(shù),使得對是自然對數(shù)的底數(shù))內(nèi)的任意個(gè)實(shí)數(shù)都有成立;
(3)求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
某廠生產(chǎn)某種零件,每個(gè)零件的成本為40元,出廠單價(jià)定為60元.該廠為鼓勵(lì)銷售商訂購,決定當(dāng)一次訂購量超過100個(gè)時(shí),每多訂購一個(gè),訂購的全部零件的出廠單價(jià)就降低0.02元,但實(shí)際出廠單價(jià)不能低于51元.
(1)當(dāng)一次訂購量為多少個(gè)時(shí),零件的實(shí)際出廠單價(jià)恰降為51元?
(2)設(shè)一次訂購量為x個(gè),零件的實(shí)際出廠單價(jià)為P元,寫出函數(shù)P=f(x)的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分10分)
一種放射性元素,最初的質(zhì)量為500g,按每年10﹪衰減.
(Ⅰ)求t年后,這種放射性元素質(zhì)量ω的表達(dá)式;
(Ⅱ)由求出的函數(shù)表達(dá)式,求這種放射性元素的半衰期(剩留量為原來的一半所需要的時(shí)間).(精確到0.1;參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分分)已知函數(shù)是不同時(shí)為零的常數(shù)).
(1)當(dāng)時(shí),若不等式對任意恒成立,求實(shí)數(shù)的取值范圍;
(2)求證:函數(shù)內(nèi)至少存在一個(gè)零點(diǎn).

查看答案和解析>>

同步練習(xí)冊答案