(本小題滿分12分)
某產(chǎn)品生產(chǎn)廠家根據(jù)以往的生產(chǎn)銷售經(jīng)驗(yàn)得到下面有關(guān)生產(chǎn)銷售的統(tǒng)計(jì)規(guī)律:每生產(chǎn)產(chǎn)品x(百臺(tái)),其總成本為G(x)(萬(wàn)元),其中固定成本為2.8萬(wàn)元,并且每生產(chǎn)1百臺(tái)的生產(chǎn)成本為1萬(wàn)元(總成本=固定成本+生產(chǎn)成本).銷售收入R(x)(萬(wàn)元)滿足
,假定該產(chǎn)品產(chǎn)銷平衡(即生產(chǎn)的產(chǎn)品都能賣掉),根據(jù)上述統(tǒng)計(jì)規(guī)律,請(qǐng)完成下列問(wèn)題:
(1)寫出利潤(rùn)函數(shù)y=f(x)的解析式(利潤(rùn)=銷售收入-總成本);
(2)工廠生產(chǎn)多少臺(tái)產(chǎn)品時(shí),可使盈利最多?
(1)=.
(2)當(dāng)工廠生產(chǎn)4百臺(tái)時(shí),可使贏利最大為3.6萬(wàn)元.
解析試題分析:(1)由題意得G(x)=2.8+x.
∴=R(x)-G(x)=.
(2)當(dāng)x >5時(shí),∵函數(shù)遞減,∴<=3.2(萬(wàn)元)
當(dāng)0≤x≤5時(shí),函數(shù)= -0.4(x-4)2+3.6,
當(dāng)x=4時(shí),有最大值為3.6(萬(wàn)元).
所以當(dāng)工廠生產(chǎn)4百臺(tái)時(shí),可使贏利最大為3.6萬(wàn)元.
考點(diǎn):本題主要考查函數(shù)模型,分段函數(shù)的概念,一次函數(shù)、二次函數(shù)的最值。
點(diǎn)評(píng):典型題,解此類問(wèn)題,要遵循“審清題意、假設(shè)變量、構(gòu)建函數(shù)模型、解、答”等步驟。對(duì)于構(gòu)建得到的函數(shù)模型,涉及什么函數(shù),就考慮運(yùn)用什么函數(shù)的性質(zhì)求解。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)二次函數(shù)滿足下列條件:①當(dāng)時(shí),的最小值為,且圖像關(guān)于直線對(duì)稱;②當(dāng)時(shí),恒成立.
(1)求的值;
(2)求的解析式;
(3)若在區(qū)間上恒有,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
商場(chǎng)銷售某一品牌的羊毛衫,購(gòu)買人數(shù)是羊毛衫標(biāo)價(jià)的一次函數(shù),標(biāo)價(jià)越高,購(gòu)買人數(shù)越少.把購(gòu)買人數(shù)為零時(shí)的最低標(biāo)價(jià)稱為無(wú)效價(jià)格,已知無(wú)效價(jià)格為每件300元.現(xiàn)在這種羊毛衫的成本價(jià)是100元/ 件,商場(chǎng)以高于成本價(jià)的價(jià)格(標(biāo)價(jià))出售. 問(wèn):
(1)商場(chǎng)要獲取最大利潤(rùn),羊毛衫的標(biāo)價(jià)應(yīng)定為每件多少元?
(2)通常情況下,獲取最大利潤(rùn)只是一種“理想結(jié)果”,如果商場(chǎng)要獲得最大利潤(rùn)的75%,那么羊毛衫的標(biāo)價(jià)為每件多少元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分10分)已知函數(shù)為偶函數(shù),且在上為增函數(shù).
(1)求的值,并確定的解析式;
(2)若且,是否存在實(shí)數(shù)使在區(qū)間上的最大值為2,若存在,求出的值,若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)南昌市在加大城市化進(jìn)程中,環(huán)境污染問(wèn)題也日益突出。據(jù)環(huán)保局測(cè)定,某處的污染指數(shù)與附近污染源的強(qiáng)度成正比,與到污染源距離的平方成反比.現(xiàn)已知相距18的A,B兩家工廠(視作污染源)的污染強(qiáng)度分別為,它們連線上任意一點(diǎn)C處的污染指數(shù)等于兩家工廠對(duì)該處的污染指數(shù)之和.設(shè)().
(1) 試將表示為的函數(shù);
(2) 若,且時(shí),取得最小值,試求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分15分)
為了保護(hù)環(huán)境,發(fā)展低碳經(jīng)濟(jì),某單位在國(guó)家科研部門的支持下,采用了新工藝,把二氧化碳轉(zhuǎn)化為一種可利用的化工產(chǎn)品.已知該單位每月的處理量最少為400噸,最多為600噸,月處理成本(元)與月處理量(噸)之間的函數(shù)關(guān)系可近似的表示為:,且每處理一噸二氧化碳得到可利用的化工產(chǎn)品價(jià)值為100元.
(1)該單位每月處理量為多少噸時(shí),才能使每噸的平均處理成本最低?
(2)該單位每月能否獲利?如果獲利,求出最大利潤(rùn);如果不獲利,則國(guó)家至少需要補(bǔ)貼多少元才能使該單位不虧損?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)f(x)="2" sin(0≤x≤5),點(diǎn)A、B分別是函數(shù)y=f(x)圖像上的最高點(diǎn)和最低點(diǎn).
(1)求點(diǎn)A、B的坐標(biāo)以及·的值;
(2)沒(méi)點(diǎn)A、B分別在角、的終邊上,求tan()的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分16分)
有甲、乙兩種商品,經(jīng)銷這兩種商品所獲的利潤(rùn)依次為(萬(wàn)元)和(萬(wàn)元),它們與投入的資金(萬(wàn)元)的關(guān)系,據(jù)經(jīng)驗(yàn)估計(jì)為:, 今有3萬(wàn)元資金投入經(jīng)銷甲、乙兩種商品,為了獲得最大利潤(rùn),應(yīng)對(duì)甲、乙兩種商品分別投入多少資金?總共獲得的最大利潤(rùn)是多少萬(wàn)元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分14分) 本題共有2個(gè)小題,第1小題滿分6分,第2小題滿分8分.
已知函數(shù)=.
(1)判斷函數(shù)的奇偶性,并證明;
(2)求的反函數(shù),并求使得函數(shù)有零點(diǎn)的實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com