如圖,在直角三角形ABC的斜邊AB上有一點(diǎn)P,它到這個(gè)三角形兩條直角邊的距離分別為4和3,則△ABC面積的最小值是( )

A.12
B.18
C.24
D.48
【答案】分析:設(shè)∠B=θ,將BC、AC用θ表示出來(lái),然后根據(jù)直角三角形的面積公式表示其面積,最后利用基本不等式求出最值即可.
解答:解:設(shè)∠B=θ,則BC=4+,AC=3+4tanθ,θ∈(0,
∴S△ABC=AC×BC=(=3+4tanθ)(4+)=(24+16tanθ+)≥(24+2)=24
當(dāng)且僅當(dāng)tanθ=時(shí)取等號(hào)
故選C.
點(diǎn)評(píng):本題主要考查了三角形的面積,以及基本不等式的應(yīng)用,同時(shí)考查了計(jì)算能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在直角三角形ABC中,∠BAC=90°,D為BC的中點(diǎn),|AB|=2
3
|AC|=
1
2
,以A、B為焦點(diǎn)的橢圓經(jīng)過(guò)點(diǎn)C.
(I)建立適當(dāng)?shù)闹苯亲鴺?biāo)系,求橢圓的方程;
(II)是否存在不平行于AB的直線l與(I)中橢圓交于不同兩點(diǎn)M、N,使(
DM
+
DN
)•
MN
=0
?若存在,求出直線l斜率的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在直角三角形ABC中,斜邊AB=4.設(shè)角A=θ,△ABC的面積為S
(1)試用θ表示S,并求S的最大值;
(2)計(jì)算
AB
AC
+
BC
BA
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖:在直角三角形ABC中,已知AB=a,∠ACB=30°,∠B=90°,D為AC的中點(diǎn),E為BD的中點(diǎn),AE的延長(zhǎng)線交BC于F,將△ABD沿BD折起,二面角A′-BD-C的大小記為θ.

(1)求證:平面A′EF⊥平面BCD;
(2)當(dāng)A′B⊥CD時(shí),求sinθ的值;
(3)在(2)的條件下,求點(diǎn)C到平面A′BD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•貴州模擬)如圖,在直角三角形ABC的斜邊AB上有一點(diǎn)P,它到這個(gè)三角形兩條直角邊的距離分別為4和3,則△ABC面積的最小值是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在直角三角形ABC中,∠BAC=90°,D為BC的中點(diǎn),數(shù)學(xué)公式,數(shù)學(xué)公式,以A、B為焦點(diǎn)的橢圓經(jīng)過(guò)點(diǎn)C.
(I)建立適當(dāng)?shù)闹苯亲鴺?biāo)系,求橢圓的方程;
(II)是否存在不平行于AB的直線l與(I)中橢圓交于不同兩點(diǎn)M、N,使數(shù)學(xué)公式?若存在,求出直線l斜率的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案