(2012•貴州模擬)如圖,在直角三角形ABC的斜邊AB上有一點(diǎn)P,它到這個(gè)三角形兩條直角邊的距離分別為4和3,則△ABC面積的最小值是( 。
分析:設(shè)∠B=θ,將BC、AC用θ表示出來,然后根據(jù)直角三角形的面積公式表示其面積,最后利用基本不等式求出最值即可.
解答:解:設(shè)∠B=θ,則BC=4+
3
tanθ
,AC=3+4tanθ,θ∈(0,
π
2

∴S△ABC=
1
2
AC×BC=
1
2
(=3+4tanθ)(4+
3
tanθ
)=
1
2
(24+16tanθ+
9
tanθ
)≥
1
2
(24+2
16×9
)=24
當(dāng)且僅當(dāng)tanθ=
3
4
時(shí)取等號(hào)
故選C.
點(diǎn)評(píng):本題主要考查了三角形的面積,以及基本不等式的應(yīng)用,同時(shí)考查了計(jì)算能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•貴州模擬)已知圓C1的參數(shù)方程為
x=cosφ
y=sinφ
(φ為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,圓C2的極坐標(biāo)方程為ρ=2cos(θ+
π
3
)

(Ⅰ)將圓C1的參數(shù)方程化為普通方程,將圓C2的極坐標(biāo)方程化為直角坐標(biāo)方程;
(Ⅱ)圓C1、C2是否相交,若相交,請(qǐng)求出公共弦的長;若不相交,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•貴州模擬)已知函數(shù)f(x)=
a+blnx
x+1
在點(diǎn)(1,f(1))處的切線方程為x+y=2.
(I)求a,b的值;
(II)對(duì)函數(shù)f(x)定義域內(nèi)的任一個(gè)實(shí)數(shù)x,f(x)<
m
x
恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•貴州模擬)若點(diǎn)P(1,1)為圓x2+y2-6x=0的弦MN的中點(diǎn),則弦MN所在直線方程為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•貴州模擬)(x+1)(1-2x)5展開式中,x3的系數(shù)為
-40
-40
(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•貴州模擬)設(shè)集合M={x|x2-x-6<0},N={x|y=log2(x-1)},則M∩N等于( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案