已知F1,F(xiàn)2是雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦點,點P在雙曲線上且不與頂點重合,過F2作∠F1PF2的角平分線的垂線,垂足為A.若|OA|=b,則該雙曲線的離心率為
 
考點:雙曲線的簡單性質(zhì)
專題:圓錐曲線的定義、性質(zhì)與方程
分析:由題設(shè)條件推導(dǎo)出PQ=PF2,由雙曲線性質(zhì)推導(dǎo)出PF1-PQ=QF1=2a,由中位線定理推導(dǎo)出QF1=2a=2OA=2,由此及彼能求出雙曲線的離心率.
解答: 解:∵F1,F(xiàn)2是雙曲線
x2
a2
-
y2
b2
=1的左右焦點,
延長F2A交PF1于Q,
∵PA是∠F1PF2的角平分線,∴PQ=PF2,
∵P在雙曲線上,∴PF1-PF2=2a,
∴PF1-PQ=QF1=2a,
∵O是F1F2中點,A是F2Q中點,
∴OA是△F2F1Q的中位線,
∴QF1=2a=2OA=2b,
∴a=b,c=
2
a,
∴雙曲線的離心率e=
2

故答案為:
2
點評:本題考查雙曲線的離心率的求法,是中檔題,解題時要認(rèn)真審題,要熟練掌握雙曲線的性質(zhì).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知{an}是以1為首項的等比數(shù)列,若a7•a11=100,則a9的值是( 。
A、-10B、10
C、±10D、不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}滿足an+1=
1
an2+2
(n∈N*),0<a1
1
2

(Ⅰ)求證:|an+2-an+1|<
1
4
|an+1-an|(n∈N*
(Ⅱ)求證:|an+1-an|<(
1
4
n-1(n∈N*
(Ⅲ)對任意n,m,k∈N*且n>m>k,求證:|am-an|<
4
3
•(
1
4
k

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出以下幾個命題:
①由曲線y=x2與直線y=2x圍成的封閉區(qū)域的面積為
4
3

②已知點A是定圓C上的一個定點,線段AB為圓的動弦,若
OP
=
1
2
OA
+
OB
),O為坐標(biāo)原點,則動點P的軌跡為圓;
③把5本不同的書分給4個人,每人至少1本,則不同的分法種數(shù)為
A
4
5
A
1
4
=480種.
④若直線l∥平面α,直線l⊥直線m,直線l?平面β,則β⊥α.
其中,正確的命題有
 
.(將所有正確命題的序號都填在橫線上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知(x-m)7=a0+a1x+a2x2+…+a7x7的展開式中x4的系數(shù)是-35,則a1+a2+a3+…a7=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在三棱椎A(chǔ)-BCD中,AB=BC=4,AD=BD=CD=2
2
,在底面BCD內(nèi)作CE⊥CD,且CE=
2

(1)求證:CE∥平面ABD;
(2)如果二面角A-BD-C的大小為90°,求二面角B-AC-E的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C:y2=2px(p>0)上的一點M(2,m)(m>0),M到焦點F的距離為
5
2
,A、B是拋物線C上異于M的兩點,且MA⊥MB.
(1)求p和m的值;
(2)問直線AB是否恒過定點?若過定點,求出這個定點的坐標(biāo);若不過定點,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a、b、c分別是角A、B、C所對的邊,A=
π
3
,a=
3
,c=1,則△ABC的面積S=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=|x+a|-|x-4|,x∈R
①當(dāng)a=1時,解不等式f(x)<2;
②若關(guān)于x的不等式f(x)≤5-|a+1|恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案