【題目】如圖是一“T”型水渠的平面視圖(俯視圖),水渠的南北方向和東西方向軸截面均為矩形,南北向渠寬為4m,東西向渠寬m(從拐角處,即圖中,處開始).假定渠內(nèi)的水面始終保持水平位置(即無高度差).

1)在水平面內(nèi),過點的一條直線與水渠的內(nèi)壁交于兩點,且與水渠的一邊的夾角為,將線段的長度表示為的函數(shù);

2)若從南面漂來一根長為7m的筆直的竹竿(粗細不計),竹竿始終浮于水平面內(nèi),且不發(fā)生形變,問:這根竹竿能否從拐角處一直漂向東西向的水渠(不會卡。?請說明理由.

【答案】1;(2)這根竹竿能從拐角處一直漂向東西向的水渠,理由詳見解析.

【解析】

1)計算,,得到函數(shù)解析式.

2)設,求導得到單調(diào)區(qū)間,計算函數(shù)的最小值,得到答案.

1,,所以,即

2)設,,

,

,得,

且當,;當,

所以上單調(diào)遞減;在上單調(diào)遞增,

所以當時,取得極小值,即為最小值.

時,,,

所以,

即這根竹竿能通過拐角處的長度的最大值為m

因為,所以這根竹竿能從拐角處一直漂向東西向的水渠.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知雙曲線過點且漸近線為,則下列結(jié)論錯誤的是(

A.曲線的方程為;

B.左焦點到一條漸近線距離為;

C.直線與曲線有兩個公共點;

D.過右焦點截雙曲線所得弦長為的直線只有三條;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù),.

1)若對任意,恒成立,求的取值集合;

2)設,點,點,直線的斜率為求證: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】全國文明城市是中國所有城市品牌中含金量最高、創(chuàng)建難度最大的一個,是反映城市整體文明水平的綜合性榮譽稱號,是目前國內(nèi)城市綜合類評比中的最高榮譽,也是最具價值的城市品牌,作為普通市民,既是城市文明的最大受益者,更是文明城市的主要創(chuàng)造者,皖北某市為提高市民對文明城市創(chuàng)建的認識,舉辦了創(chuàng)建文明城市知識競賽,從所有答卷中隨機抽取400份試卷作為樣本,將樣本的成績(滿分100分,成績均為不低于40分的整數(shù))分成六段:后得到如圖所示的頻率分布直方圖.

(Ⅰ)求樣本的平均數(shù);

(Ⅱ)現(xiàn)從該樣本成績在兩個分數(shù)段內(nèi)的市民中按分層抽樣選取6人,求從這6人中隨機選取2人,且2人的競賽成績之差的絕對值大于20的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD是邊長為4的菱形,∠BAD=60°,對角線ACBD相交于點O,四邊形ACFE為梯形,EF//AC,點E在平面ABCD上的射影為OA的中點,AE與平面ABCD所成角為45°.

(Ⅰ)求證:BD⊥平面ACF

(Ⅱ)求平面DEF與平面ABCD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司為了對某種商品進行合理定價,需了解該商品的月銷售量(單位:萬件)與月銷售單價(單位:元/件)之間的關系,對近個月的月銷售量和月銷售單價數(shù)據(jù)進行了統(tǒng)計分析,得到一組檢測數(shù)據(jù)如表所示:

月銷售單價(元/件)

月銷售量(萬件)

1)若用線性回歸模型擬合之間的關系,現(xiàn)有甲、乙、丙三位實習員工求得回歸直線方程分別為:,其中有且僅有一位實習員工的計算結(jié)果是正確的.請結(jié)合統(tǒng)計學的相關知識,判斷哪位實習員工的計算結(jié)果是正確的,并說明理由;

2)若用模型擬合之間的關系,可得回歸方程為,經(jīng)計算該模型和(1)中正確的線性回歸模型的相關指數(shù)分別為,請用說明哪個回歸模型的擬合效果更好;

3)已知該商品的月銷售額為(單位:萬元),利用(2)中的結(jié)果回答問題:當月銷售單價為何值時,商品的月銷售額預報值最大?(精確到

參考數(shù)據(jù):.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,橢圓左、右焦點分別為,離心率為,兩準線間距離為8,圓O的直徑為,直線l與圓O相切于第四象限點T,與y軸交于M點,與橢圓C交于點NN點在T點上方),且

1)求橢圓C的標準方程;

2)求直線l的方程;

3)求直線l上滿足到距離之和為的所有點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx)=(x12alnxa0.

1)討論fx)的單調(diào)性;

2)若fx)存在兩個極值點x1,x2x1x2),且關于x的方程fx)=bbR)恰有三個實數(shù)根x3,x4,x5x3x4x5),求證:2x2x1)>x5x3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對任意實數(shù)給出下列命題:①“的充要條件;②“是無理數(shù)是無理數(shù)的充要條件;③“的充分條件;④“的必要條件.其中真命題的個數(shù)是(  )

A.1B.2C.3D.4

查看答案和解析>>

同步練習冊答案