【題目】下列說法正確的是(
A.“sinα= ”是“cos2α= ”的必要不充分條件
B.已知命題p:?x∈R,使2x>3x;命題q:?x∈(0,+∞),都有 ,則p∧(¬q)是真命題
C.命題“若xy=0,則x=0或y=0”的否命題是“若xy≠0,則x≠0或y≠0”
D.從勻速傳遞的生產(chǎn)流水線上,質(zhì)檢員每隔5分鐘從中抽取一件產(chǎn)品進行某項指標檢測,這是分成抽樣

【答案】B
【解析】解:由cos2α= ,得 ,解得sinα= ,∴“sinα= ”是“cos2α= ”的充分不必要條件,故A錯誤; 命題p:x∈R,使2x>3x為真命題,命題q:x∈(0,+∞),都有 為假命題,則p∧(¬q)是真命題,故B正確;
命題“若xy=0,則x=0或y=0”的否命題是“若xy≠0,則x≠0且y≠0”,故C錯誤;
從勻速傳遞的生產(chǎn)流水線上,質(zhì)檢員每隔5分鐘從中抽取一件產(chǎn)品進行某項指標檢測,這是系統(tǒng)抽樣,故D錯誤.
故選:B.
【考點精析】根據(jù)題目的已知條件,利用命題的真假判斷與應用的相關知識可以得到問題的答案,需要掌握兩個命題互為逆否命題,它們有相同的真假性;兩個命題為互逆命題或互否命題,它們的真假性沒有關系.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面為菱形,平面底面,且,,的中點.

1)證明:.

2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)若函數(shù)的圖象在處的切線過點,求的值;

(2)當時,函數(shù)上沒有零點,求實數(shù)的取值范圍;

(3)當時,存在實數(shù)使得,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知命題 ,命題 .

1)若,求實數(shù)的值;

2)若的充分條件,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】執(zhí)行如圖的程序框圖,當n≥2,n∈Z時,fn(x)表示fn1(x)的導函數(shù),若輸入函數(shù)f1(x)=sinx﹣cosx,則輸出的函數(shù)fn(x)可化為(
A. sin(x+
B. sin(x﹣ )??
C.﹣ sin(x+
D.﹣ sin(x﹣

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若以直角坐標系xOy的O為極點,Ox為極軸,選擇相同的長度單位建立極坐標系,得曲線C的極坐標方程是ρ=
(1)將曲線C的極坐標方程化為直角坐標方程,并指出曲線是什么曲線;
(2)若直線l的參數(shù)方程為 (t為參數(shù))當直線l與曲線C相交于A,B兩點,求| |

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知F1 , F2分別為橢圓C1 (a>b>0)的上下焦點,其F1是拋物線C2:x2=4y的焦點,點M是C1與C2在第二象限的交點,且|MF1|=
(1)試求橢圓C1的方程;
(2)與圓x2+(y+1)2=1相切的直線l:y=k(x+t)(t≠0)交橢圓于A,B兩點,若橢圓上一點P滿足 ,求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

)當時,求在區(qū)間上的取值范圍.

)當時,,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知三棱柱的側棱垂直于底面,,,,分別是的中點.

(Ⅰ)證明:平面;

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

同步練習冊答案