拋物線上的兩點(diǎn)、到焦點(diǎn)的距離之和是,則線段的中點(diǎn)到軸的距離是     

 

【答案】

2

【解析】

試題分析:根據(jù)拋物線的方程求出準(zhǔn)線方程,利用拋物線的定義拋物線上的點(diǎn)到焦點(diǎn)的距離等于到準(zhǔn)線的距離,列出方程求出A,B的中點(diǎn)橫坐標(biāo),求出線段AB的中點(diǎn)到y(tǒng)軸的距離解:∵F是拋物線y2=2x的焦點(diǎn)F( ,0)準(zhǔn)線方程x=-設(shè)A(x1,y1) B(x2,y2),∴|AF|+|BF|=x1++x2+=5,解得x1+x2=4,∴線段AB的中點(diǎn)橫坐標(biāo)為:2.故線段的中點(diǎn)到軸的距離是2.答案為:2

考點(diǎn):拋物線的基本性質(zhì)

點(diǎn)評(píng):本題考查拋物線的基本性質(zhì),利用拋物線的定義將到焦點(diǎn)的距離轉(zhuǎn)化為到準(zhǔn)線的距離是解題的關(guān)鍵

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

以下命題:
①二直線平行的充要條件是它們的斜率相等;
②過(guò)圓上的點(diǎn)(x0,y0)與圓x2+y2=r2相切的直線方程是x0x+y0y=r2
③平面內(nèi)到兩定點(diǎn)的距離之和等于常數(shù)的點(diǎn)的軌跡是橢圓;
④拋物線上任意一點(diǎn)M到焦點(diǎn)的距離都等于點(diǎn)M到其準(zhǔn)線的距離.
其中正確命題的標(biāo)號(hào)是
②④
②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線上有一點(diǎn),它到焦點(diǎn)的距離等于,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年浙江省浙北名校聯(lián)盟高三上學(xué)期期中聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知拋物線上有一點(diǎn),到焦點(diǎn)的距離為.

(Ⅰ)求的值.

(Ⅱ)如圖,設(shè)直線與拋物線交于兩點(diǎn),且,過(guò)弦的中點(diǎn)作垂直于軸的直線與拋物線交于點(diǎn),連接.試判斷的面積是否為定值?若是,求出定值;否則,請(qǐng)說(shuō)明理由.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年四川省高三3月月考文科數(shù)學(xué)試卷 題型:解答題

已知拋物線  若拋物線上點(diǎn),2到焦點(diǎn)的距離為3,求拋物線的方程。 設(shè)過(guò)焦點(diǎn)的動(dòng)直線交拋物線于兩點(diǎn),連接、并延長(zhǎng)分別交拋物線的準(zhǔn)線于、,求證:以為直徑的圓過(guò)焦點(diǎn)

 

查看答案和解析>>

同步練習(xí)冊(cè)答案