【題目】在△ABC中,角A,B,C的對邊分別是a,b,c,已知sinC+cosC=1-sin.

(1)求sinC的值;

(2)若a2+b2=4(a+b)-8,求邊c的值.

【答案】(1) ;(2) .

【解析】試題分析:

(1)由題意求解三角方程可得 ;

(2)整理題中所給的等式,結(jié)合余弦定理可得 .

試題解析:

(1)由已知得sinC+sin=1-cosC,即sin=2sin2,

由sin≠0得2cos+1=2sin,即sin-cos,

兩邊平方得:sinC=.

(2)由sin-cos>0得,即<C<π,則由sinC=得cosC=-,

由a2+b2=4(a+b)-8得:(a-2)2+(b-2)2=0,則a=2,b=2.

由余弦定理得c2=a2+b2-2abcosC=8+2,所以c=+1.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某校的一個社會實踐調(diào)查小組,在對該校學生的良好“用眼習慣”的調(diào)查中,隨機發(fā)放了120分問卷.對收回的100份有效問卷進行統(tǒng)計,得到如下列聯(lián)表:

做不到科學用眼

能做到科學用眼

合計

45

10

55

30

15

45

合計

75

25

100

(1)現(xiàn)按女生是否能做到科學用眼進行分層,從45份女生問卷中抽取了6份問卷,從這6份問卷中再隨機抽取3份,并記其中能做到科學用眼的問卷的份數(shù),試求隨機變量的分布列和數(shù)學期望;

(2)若在犯錯誤的概率不超過的前提下認為良好“用眼習慣”與性別有關,那么根據(jù)臨界值表,最精確的的值應為多少?請說明理由.

附:獨立性檢驗統(tǒng)計量,其中.

獨立性檢驗臨界值表:

0.25

0.15

0.10

0.05

0.025

1.323

2.072

2.706

3.840

5.024

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙兩人各射擊一次,擊中目標的概率分別是,假設兩人射擊是否擊中目標,相互之間沒有影響;每次射擊是否擊中目標,相互之間沒有影響.

1)求甲射擊4次,至多1次未擊中目標的概率;

2)求兩人各射擊4次,甲恰好擊中目標2次且乙恰好擊中目標3次的概率;

3)假設某人連續(xù)2次未擊中目標,則停止射擊,求乙恰好射擊5次后被中止射擊的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知0m2,動點M到兩定點F1(﹣m,0),F2m,0)的距離之和為4,設點M的軌跡為曲線C,若曲線C過點.

1)求m的值以及曲線C的方程;

2)過定點且斜率不為零的直線l與曲線C交于A,B兩點.證明:以AB為直徑的圓過曲線C的右頂點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】是否存在常數(shù)a,b,c,使等式N+都成立,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若一束平行光線照射到一個棱長為1的正方體表面上,俯視圖在正方體正后方垂直于光線的平面上留下影子的面積為,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】4位同學在同一天的上午、下午參加“身高與體重”“立定跳遠”“肺活量”“握力”“臺階”5個項目的測試,每位同學上午、下午各測試1個項目,且不重復.若上午不測“握力”項目,下午不測“臺階”項目,其余項目上午、下午都各測試1人,則不同的安排方式有多少種?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,以,為頂點作正三角形,再以的中點為頂點作正三角形,再以的中點為頂點作正三角形,,如此繼續(xù)下去.有如下結(jié)論:

①所作的正三角形的邊長構(gòu)成公比為的等比數(shù)列;

②每一個正三角形都有一個頂點在直線上;

③第六個正三角形的不在第五個正三角形邊上的頂點的坐標是;

④第個正三角形的不在第個正三角形邊上的頂點的橫坐標是,則.

其中正確結(jié)論的序號是___________.(把你認為正確結(jié)論的序號都填上)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】M是圓上的動點,O是原點,N是射線OM上的點,若,求點N的軌跡方程.

查看答案和解析>>

同步練習冊答案