【題目】有4位同學(xué)在同一天的上午、下午參加“身高與體重”“立定跳遠(yuǎn)”“肺活量”“握力”“臺(tái)階”5個(gè)項(xiàng)目的測(cè)試,每位同學(xué)上午、下午各測(cè)試1個(gè)項(xiàng)目,且不重復(fù).若上午不測(cè)“握力”項(xiàng)目,下午不測(cè)“臺(tái)階”項(xiàng)目,其余項(xiàng)目上午、下午都各測(cè)試1人,則不同的安排方式有多少種?
【答案】264種
【解析】
先分別用甲、乙、丙、丁代表四個(gè)同學(xué);用1,2,3,4,5代表這5個(gè)項(xiàng)目.根據(jù)題意,先確定上午的不同安排方式;再結(jié)合題意,不妨設(shè)上午的安排是:甲1,乙2,丙3,丁5;討論:丁下午測(cè)試4,丁下午不測(cè)試4兩種情況,分別求出不同的安排方法,進(jìn)而可求出結(jié)果.
分別用甲、乙、丙、丁代表四個(gè)同學(xué);用1,2,3,4,5代表這5個(gè)項(xiàng)目.
由條件,上午的安排是1,2,3,5的排列,共有種;
由于每位同學(xué)上午、下午各測(cè)試1個(gè)項(xiàng)目,且不重復(fù),故下午的安排是1,2,3,4的排列,但不允許出現(xiàn)某同學(xué)上午、下午測(cè)試同一項(xiàng)目的情況.
不妨設(shè)上午的安排是:甲1,乙2,丙3,丁5;
(1)若丁下午測(cè)試4,則甲乙丙測(cè)試的項(xiàng)目可以為:2,3,1;3,1,2;共2種;
(2)當(dāng)丁下午不測(cè)試4,則丁有種選擇,需從甲乙丙中選擇1人測(cè)試4,則有種選擇;剩下兩人只有1種選擇;
故下午不同的安排方式有種;
所以,共有種不同的安排方式.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)任意實(shí)數(shù)給出下列命題:①“”是“”的充要條件;②“是無理數(shù)”是“是無理數(shù)”的充要條件;③“”是“”的充分條件;④“”是“”的必要條件.其中真命題的個(gè)數(shù)是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司對(duì)旗下的甲、乙兩個(gè)門店在1至9月份的營(yíng)業(yè)額(單位:萬元)進(jìn)行統(tǒng)計(jì)并得到如圖折線圖.
下面關(guān)于兩個(gè)門店?duì)I業(yè)額的分析中,錯(cuò)誤的是( )
A.甲門店的營(yíng)業(yè)額折線圖具有較好的對(duì)稱性,故而營(yíng)業(yè)額的平均值約為32萬元
B.根據(jù)甲門店的營(yíng)業(yè)額折線圖可知,該門店?duì)I業(yè)額的平均值在[20,25]內(nèi)
C.根據(jù)乙門店的營(yíng)業(yè)額折線圖可知,其營(yíng)業(yè)額總體是上升趨勢(shì)
D.乙門店在這9個(gè)月份中的營(yíng)業(yè)額的極差為25萬元
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C的對(duì)邊分別是a,b,c,已知sinC+cosC=1-sin.
(1)求sinC的值;
(2)若a2+b2=4(a+b)-8,求邊c的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】由0,1,2,3,4,5這六個(gè)數(shù)字可以組成多少個(gè)沒有重復(fù)數(shù)字,且偶數(shù)數(shù)字與奇數(shù)數(shù)字相間隔的四位數(shù)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),向量,,且.
(1)求點(diǎn)的軌跡的方程;
(2)過點(diǎn)作直線交曲線于,兩點(diǎn)(在,之間).設(shè),直線的傾斜角,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某課程考核分理論與實(shí)驗(yàn)兩部分進(jìn)行,每部分考核成績(jī)只記“合格”與“不合格”,兩部分考核都是“合格”,則該課程考核“合格”,若甲、乙、丙三人在理論考核中合格的概率分別為0.9,0.8,0.7,在實(shí)驗(yàn)考核中合格的概率分別為0.8,0.7,0.9,所有考核是否合格相互之間沒有影響.
(1)求甲、乙、丙三人在理論考核中至少有兩人合格的概率;
(2)求這三個(gè)人該課程考核都合格的概率(結(jié)果保留三位小數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】兩城市和相距,現(xiàn)計(jì)劃在兩城市外以為直徑的半圓上選擇一點(diǎn)建造垃圾處理場(chǎng),其對(duì)城市的影響度與所選地點(diǎn)到城市的距離有關(guān),對(duì)城和城的總影響度為城和城的影響度之和,記點(diǎn)到城的距離為,建在處的垃圾處理場(chǎng)對(duì)城和城的總影響度為,統(tǒng)計(jì)調(diào)查表明:垃圾處理場(chǎng)對(duì)城的影響度與所選地點(diǎn)到城的距離的平方成反比,比例系數(shù)為4,對(duì)城的影響度與所選地點(diǎn)到城的距離的平方成反比,比例系數(shù)為,當(dāng)垃圾處理場(chǎng)建在的中點(diǎn)時(shí),對(duì)城和城的總影響度為0.065;
(1)將表示成的函數(shù);
(2)判斷上是否存在一點(diǎn),使建在此處的垃圾處理場(chǎng)對(duì)城和城的總影響度最小?若存在,求出該點(diǎn)到城的距離;若不存在,說明理由;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:過點(diǎn),且離心率為.
(1)求橢圓的方程;
(2)若斜率為的直線與橢圓交于不同的兩點(diǎn),,且線段的垂直平分線過點(diǎn),求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com