函 數(shù)f(x)=1+log3x的定義域是(1,9],則函數(shù)g(x)=f2(x)+f(x2)的值域是
 
考點(diǎn):函數(shù)的值域,函數(shù)的定義域及其求法
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:由函 數(shù)f(x)=1+log3x的定義域是(1,9]可求得0<log3x≤2,化簡g(x)=f2(x)+f(x2)求值域.
解答: 解:∵f(x)=1+log3x的定義域是(1,9],
∴1<f(x)≤3;
0<log3x≤2
g(x)=f2(x)+f(x2
=(1+log3x)2+1+log3x2,
=log23x+4log3x+2,
故2<log23x+4log3x+2≤14;
故答案為:(2,14].
點(diǎn)評(píng):本題考查了函數(shù)的化簡與函數(shù)值域的求法,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
4
x-2
在區(qū)間[3,6]上的最小值是( 。
A、1B、3C、-2D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線過點(diǎn)P(0,2),且在x軸上的截距是2,則直線的傾斜角是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義運(yùn)算f(a?b)=
b,a≥b
a,a<b
,則函數(shù)f(ex?e-x)的值域是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a1=1,對(duì)所有n∈N*,都有a1a2…an=n2,則a3=(  )
A、
3
2
B、3
C、9
D、
9
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x2-9≤0},B={x|x2-4x+3>0},則A∪B=
 
,A∩B=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合M={y|y=x2-1(x∈R)},P={x|y=
3-x2
,x∈R},則M∩P=( 。
A、{(-
2
,1),(
2
,1)}
B、{t|1≤t≤
3
}
C、{t|-1≤t≤
3
}
D、{t|0≤t≤
3
}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過點(diǎn)P(1,2)的直線l分別與x軸,y軸的正半軸交于A,B兩點(diǎn),當(dāng)△AOB(0為坐標(biāo)原點(diǎn))的面積最小時(shí),A、B兩點(diǎn)恰好是曲線R:
x
m
+
y2
n
=1(m>0,n>0)的頂點(diǎn).
(1)求曲線R的方程;
(2)過點(diǎn)P的直線交曲線R于C、D(異于A、B)兩點(diǎn),求四邊形ACBD面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線y=x-1被橢圓
x2
4
+y2=1截得的弦長為
 

查看答案和解析>>

同步練習(xí)冊答案