設(shè)F為拋物線E: 的焦點(diǎn),A、B、C為該拋物線上三點(diǎn),已知
且
.
(1)求拋物線方程;
(2)設(shè)動(dòng)直線l與拋物線E相切于點(diǎn)P,與直線相交于點(diǎn)Q。證明以PQ為直徑的圓恒過y軸上某定點(diǎn)。
(1)(2)本題主要由
·
=0來求出M點(diǎn)。
解析試題分析:解;(1)由知
又
所以
所以所求拋物線方程為
(2)設(shè)點(diǎn)P(,
),
≠0.∵Y=
,
,
切線方程:y-=
,即y=
由 ∴Q(
,-1)
設(shè)M(0,)∴
,∵
·
=0
-
-
+
+
=0,又
,∴聯(lián)立解得
=1
故以PQ為直徑的圓過y軸上的定點(diǎn)M(0,1)
考點(diǎn):拋物線的方程
點(diǎn)評(píng):關(guān)于曲線的大題,第一問一般是求出曲線的方程,第二問常與直線結(jié)合起來,當(dāng)涉及到交點(diǎn)時(shí),常用到根與系數(shù)的關(guān)系式:(
)。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線與雙曲線
有公共焦點(diǎn)
,點(diǎn)
是曲線
在第一象限的交點(diǎn),且
.
(1)求雙曲線的方程;
(2)以雙曲線的另一焦點(diǎn)
為圓心的圓
與直線
相切,圓
:
.過點(diǎn)
作互相垂直且分別與圓
、圓
相交的直線
和
,設(shè)
被圓
截得的弦長(zhǎng)為
,
被圓
截得的弦長(zhǎng)為
,問:
是否為定值?如果是,請(qǐng)求出這個(gè)定值;如果不是,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,點(diǎn)是橢圓
(
)的左焦點(diǎn),點(diǎn)
,
分別是橢圓的左頂點(diǎn)和上頂點(diǎn),橢圓的離心率為
,點(diǎn)
在
軸上,且
,過點(diǎn)
作斜率為
的直線
與由三點(diǎn)
,
,
確定的圓
相交于
,
兩點(diǎn),滿足
.
(1)若的面積為
,求橢圓的方程;
(2)直線的斜率是否為定值?證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
定義:設(shè)分別為曲線
和
上的點(diǎn),把
兩點(diǎn)距離的最小值稱為曲線
到
的距離.
(1)求曲線到直線
的距離;
(2)已知曲線到直線
的距離為
,求實(shí)數(shù)
的值;
(3)求圓到曲線
的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系中,已知橢圓
的中心在原點(diǎn)
,焦點(diǎn)在
軸上,短軸長(zhǎng)為
,離心率為
.
(I)求橢圓的方程;
(II) 為橢圓
上滿足
的面積為
的任意兩點(diǎn),
為線段
的中點(diǎn),射線
交橢圓
與點(diǎn)
,設(shè)
,求實(shí)數(shù)
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知,
分別是橢圓
的左、右焦點(diǎn)
,
關(guān)于直線
的對(duì)稱點(diǎn)是圓
的一條直徑的兩個(gè)端點(diǎn)。
(Ⅰ)求圓的方程;
(Ⅱ)設(shè)過點(diǎn)的直線
被橢圓
和圓
所截得的弦長(zhǎng)分別為
,
。當(dāng)
最大時(shí),求直線
的方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)分別是橢圓:
的左、右焦點(diǎn),過
傾斜角為
的直線
與該橢圓相交于P,
兩點(diǎn),且
.
(Ⅰ)求該橢圓的離心率;
(Ⅱ)設(shè)點(diǎn) 滿足
,求該橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓:
的右焦點(diǎn)
在圓
上,直線
交橢圓于
、
兩點(diǎn).
(Ⅰ) 求橢圓的方程;
(Ⅱ) 若OM⊥ON(為坐標(biāo)原點(diǎn)),求
的值;
(Ⅲ) 設(shè)點(diǎn)
關(guān)于
軸的對(duì)稱點(diǎn)為
(
與
不重合),且直線
與
軸交于點(diǎn)
,試問
的面積是否存在最大值?若存在,求出這個(gè)最大值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線的焦點(diǎn)為
,點(diǎn)
是拋物線上的一點(diǎn),且其縱坐標(biāo)為4,
.
(1)求拋物線的方程;
(2)設(shè)點(diǎn)是拋物線上的兩點(diǎn),
的角平分線與
軸垂直,求直線AB的斜率;
(3)在(2)的條件下,若直線過點(diǎn)
,求弦
的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com