已知拋物線的焦點為,點是拋物線上的一點,且其縱坐標為4,
(1)求拋物線的方程;
(2)設點是拋物線上的兩點,的角平分線與軸垂直,求直線AB的斜率;
(3)在(2)的條件下,若直線過點,求弦的長.

(1)(2)-1(3)

解析試題分析:解:(1)設,因為,由拋物線的定義得,又,所以,因此,解得,從而拋物線的方程為
(2)由(1)知點的坐標為,因為的角平分線與軸垂直,所以可知的傾斜角互補,即的斜率互為相反數(shù)
設直線的斜率為,則,由題意,
代入拋物線方程得,該方程的解為4、,
由韋達定理得,即,同理,
所以,
(3)設,代入拋物線方程得,
考點:拋物線的方程
點評:關于曲線的大題,第一問一般是求出曲線的方程,第二問常與直線結合起來,當涉及到交點時,常用到根與系數(shù)的關系式:)。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

設F為拋物線E: 的焦點,A、B、C為該拋物線上三點,已知 .
(1)求拋物線方程;
(2)設動直線l與拋物線E相切于點P,與直線相交于點Q。證明以PQ為直徑的圓恒過y軸上某定點。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設橢圓的左焦點為,直線軸交于點,過點且傾斜角為30°的直線交橢圓于兩點.
(Ⅰ)求直線和橢圓的方程;
(Ⅱ)求證:點在以線段為直徑的圓上;
(Ⅲ)在直線上有兩個不重合的動點,以為直徑且過點的所有圓中,求面積最小的圓的半徑長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知點P(4, 4),圓C:與橢圓E:有一個公共點A(3,1),F(xiàn)1、F2分別是橢圓的左、右焦點,直線PF1與圓C相切.

(Ⅰ)求m的值與橢圓E的方程;(Ⅱ)設Q為橢圓E上的一個動點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,己知直線l與拋物線相切于點P(2,1),且與x軸交于點A,定點B(2,0).

(1)若動點M滿足,求點M軌跡C的方程:
(2)若過點B的直線(斜率不為零)與(1)中的軌跡C交于不同的兩點E,F(xiàn)(E在B、F之間),試求△OBE與△OBF面積之比的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知焦距為的雙曲線的焦點在x軸上,且過點P .
(Ⅰ)求該雙曲線方程 ;
(Ⅱ)若直線m經(jīng)過該雙曲線的右焦點且斜率為1,求直線m被雙曲線截得的弦長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓C:()經(jīng)過兩點.

(Ⅰ)求橢圓的方程;
(Ⅱ)過原點的直線l與橢圓C交于A、B兩點,橢圓C上一點M滿足.求證:為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓的中心在坐標原點,焦點在軸上,離心率為,且過雙曲線的頂點.
(1)求橢圓的標準方程;
(2)命題:“設是雙曲線上關于它的中心對稱的任意兩點, 為該雙曲線上的動點,若直線均存在斜率,則它們的斜率之積為定值”.試類比上述命題,寫出一個關于橢圓的類似的正確命題,并加以證明和求出此定值;
(3)試推廣(Ⅱ)中的命題,寫出關于方程不同時為負數(shù))的曲線的統(tǒng)一的一般性命題(不必證明).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

極坐標系與直角坐標系有相同的長度單位,以原點為極點,以正半軸為極軸,已知曲線的極坐標方程為,曲線的參數(shù)方程是為參數(shù),,射線與曲線交于極點外的三點
(Ⅰ)求證:;
(Ⅱ)當時,兩點在曲線上,求的值.

查看答案和解析>>

同步練習冊答案