如圖,AB為拋物線y=x2上的動弦,且|AB|=a(a為常數(shù)且a≥1),求弦AB的中點(diǎn)M與x軸的最短距離.
設(shè)A、M、B三點(diǎn)的縱坐標(biāo)分別為y1、y2、y3如圖,
A、M、B三點(diǎn)在拋物線準(zhǔn)線上的射影分別為A′、M′、B′.
F為拋物線的焦點(diǎn).連接AA′,MM′,BB′,AF,BF.
由拋物線的定義可知:|AF|=|AA′|=y1+
p
2
=y1+
1
4
,|BF|=y3+
1
4

y1=|AF|-
1
4
,y3=|BF|-
1
4

又M是線段AB的中點(diǎn),∴y2=
1
2
(y1+y3)=
1
2
(|AF|+|BF|-
1
2
)
1
2
(|AB|-
1
2
)
=
1
2
(a-
1
2
)

當(dāng)且僅當(dāng)AB過焦點(diǎn)F時(shí),等號成立.
即當(dāng)定長為a的弦AB過焦點(diǎn)F時(shí),弦AB的中點(diǎn)M與x軸的距離最小,最小值為
1
2
(a-
1
2
)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知點(diǎn)P是拋物線上的一個(gè)動點(diǎn),則點(diǎn)P到點(diǎn)(0,2)的距離與P到該拋物線準(zhǔn)線的距離之和的最小值為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在平面直角坐標(biāo)系xOy中,焦點(diǎn)為F(5,0)的拋物線的標(biāo)準(zhǔn)方程是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知點(diǎn)F(1,0),直線l:x=-1,點(diǎn)P為平面上的動點(diǎn),過點(diǎn)P作直線l的垂線,垂足為點(diǎn)Q,且
QP
FQ
=
PF
FQ
,則動點(diǎn)P的軌跡C的方程是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

拋物線x2=-
1
4
y
上的一點(diǎn)M到焦點(diǎn)的距離為1,則點(diǎn)M的縱坐標(biāo)是(  )
A.-
17
16
B.-
15
16
C.
7
16
D.
15
16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

過拋物線y2=2px(p>0)焦點(diǎn)F的直線與拋物線交于P、Q,由P、Q分別引其準(zhǔn)線的垂線PH1、QH2垂足分別為H1、H2,H1H2的中點(diǎn)為M,記|PF|=a,|QF|=b,則|MF|=______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知M是拋物線y2=4x上的一點(diǎn),F(xiàn)是拋物線的焦點(diǎn),線段MF的中點(diǎn)P到y(tǒng)軸的距離為2,則|PF|=______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

頂點(diǎn)在原點(diǎn),焦點(diǎn)是F(0,-3)的拋物線的標(biāo)準(zhǔn)方程是( 。
A.x2=-6yB.x2=-12yC.y2=-6xD.y2=-12x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知P為拋物線C:y2=4x上的一點(diǎn),F(xiàn)為拋物線C的焦點(diǎn),其準(zhǔn)線與x軸交于點(diǎn)N,直線NP與拋物線交于另一點(diǎn)Q,且|PF|=3|QF|,則點(diǎn)P坐標(biāo)為______.

查看答案和解析>>

同步練習(xí)冊答案