【題目】已知,則下列結(jié)論中正確的是( )
A. 將函數(shù)的圖象向左平移個(gè)單位后得到函數(shù)的圖象
B. 函數(shù)圖象關(guān)于點(diǎn)中心對(duì)稱(chēng)
C. 函數(shù)的圖象關(guān)于對(duì)稱(chēng)
D. 函數(shù)在區(qū)間內(nèi)單調(diào)遞增
【答案】D
【解析】對(duì)于,將函數(shù)的圖象向左平移個(gè)單位后得到函數(shù),故 錯(cuò);對(duì)于,函數(shù)圖象是軸對(duì)稱(chēng)圖形,不是中心對(duì)稱(chēng)圖形,故 錯(cuò);對(duì)于 , 函數(shù) , 時(shí),函數(shù)不取最值,所以 錯(cuò);故選.
【 方法點(diǎn)睛】本題主要通過(guò)對(duì)多個(gè)命題真假的判斷,主要綜合考查三角函數(shù)的圖象變換以及函數(shù)的對(duì)稱(chēng)性與單調(diào)性,屬于難題.這種題型綜合性較強(qiáng),也是高考的命題熱點(diǎn),同學(xué)們往往因?yàn)槟骋惶幹R(shí)點(diǎn)掌握不好而導(dǎo)致“全盤(pán)皆輸”,因此做這類(lèi)題目更要細(xì)心、多讀題,盡量挖掘出題目中的隱含條件,另外,要注意從簡(jiǎn)單的自己已經(jīng)掌握的知識(shí)點(diǎn)入手,然后集中精力突破較難的命題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在10個(gè)球中有6個(gè)紅球和4個(gè)白球(各不相同),不放回地依次摸出2個(gè)球,在第一次摸出紅球的條件下,第2次也摸到紅球的概率為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=log2(x+1).
(1)將函數(shù)f(x)的圖象上的所有點(diǎn)向右平行移動(dòng)1個(gè)單位得到函數(shù)g(x)的圖象,寫(xiě)出函數(shù)g(x)的表達(dá)式;
(2)若關(guān)于x的函數(shù)y=g2(x)﹣mg(x2)+3在[1,4]上的最小值為2,求m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)F(x)=lnx(x>1)的圖象與函數(shù)G(x)的圖象關(guān)于直線(xiàn)y=x對(duì)稱(chēng),若函數(shù)f(x)=(k﹣1)x﹣G(﹣x)無(wú)零點(diǎn),則實(shí)數(shù)k的取值范圍是( )
A.(1﹣e,1)
B.(1﹣e,∞)
C.(1﹣e,1]
D.(﹣∞,1﹣e)∪[1,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,平面平面,且,.四邊形滿(mǎn)足,,.為側(cè)棱的中點(diǎn),為側(cè)棱上的任意一點(diǎn).
(1)若為的中點(diǎn),求證: 面平面;
(2)是否存在點(diǎn),使得直線(xiàn)與平面垂直? 若存在,寫(xiě)出證明過(guò)程并求出線(xiàn)段的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】近幾年,電商行業(yè)的蓬勃發(fā)展也帶動(dòng)了快遞業(yè)的高速發(fā)展.某快遞配送站每天至少要完成1800件包裹的配送任務(wù),該配送站有8名新手快遞員和4名老快遞員,但每天最多安排10人進(jìn)行配送.已知每個(gè)新手快遞員每天可配送240件包裹,日工資320元;每個(gè)老快遞員每天可配送300件包裹,日工資520元.
(Ⅰ)求該配送站每天需支付快遞員的總工資最小值;
(Ⅱ)該配送站規(guī)定:新手快遞員某個(gè)月被評(píng)為“優(yōu)秀”,則其下個(gè)月的日工資比這個(gè)月提高12%.那么新手快遞員至少連續(xù)幾個(gè)月被評(píng)為“優(yōu)秀”,日工資會(huì)超過(guò)老快遞員?
(參考數(shù)據(jù): , , .)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】以下四個(gè)關(guān)于圓錐曲線(xiàn)的命題中:
①雙曲線(xiàn) 與橢圓 有相同的焦點(diǎn);
②以?huà)佄锞(xiàn)的焦點(diǎn)弦(過(guò)焦點(diǎn)的直線(xiàn)截拋物線(xiàn)所得的線(xiàn)段)為直徑的圓與拋物線(xiàn)的準(zhǔn)線(xiàn)是相切的;
③設(shè)A,B為兩個(gè)定點(diǎn),k為常數(shù),若|PA|﹣|PB|=k,則動(dòng)點(diǎn)P的軌跡為雙曲線(xiàn);
④過(guò)定圓C上一點(diǎn)A作圓的動(dòng)弦AB,O為原點(diǎn),若 則動(dòng)點(diǎn)P的軌跡為橢圓.其中正確的個(gè)數(shù)是( )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線(xiàn)l1:2x+y+2=0,l2:mx+4y+n=0
(1)若l1⊥l2 , 求m的值,;
(2)若l1∥l2 , 且它們的距離為 ,求m、n的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)C的極坐標(biāo)方程為ρ=4sinθ.
(1)求曲線(xiàn)C的直角坐標(biāo)方程;
(2)若曲線(xiàn)C1: (α為參數(shù))與曲線(xiàn)C所表示的圖形都相切,求r的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com