【題目】如圖,在四棱錐中,平面平面,且,.四邊形滿足,,.為側(cè)棱的中點(diǎn),為側(cè)棱上的任意一點(diǎn).
(1)若為的中點(diǎn),求證: 面平面;
(2)是否存在點(diǎn),使得直線與平面垂直? 若存在,寫(xiě)出證明過(guò)程并求出線段的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.
【答案】(1)詳見(jiàn)解析;(2)詳見(jiàn)解析.
【解析】試題分析:(1)由面面垂直的性質(zhì)定理可得平面,從而得,再結(jié)合,可得平面,又利用三角形中位線定理可得,進(jìn)而可得結(jié)果;(2)過(guò)點(diǎn)作,垂足為,先證明平面,結(jié)合平面,得,從而可得平面,利用三角形面積相等即可得線段的長(zhǎng).
試題解析:(1)∵分別為側(cè)棱的中點(diǎn),∴.
∵,∴.
∵面平面,且,面平面,
∴平面,結(jié)合平面,得.
又∵, ,∴平面,可得平面.
∴ 結(jié)合平面,得平面 平面.
(2)存在點(diǎn),使得直線與平面垂直.
平面中,過(guò)點(diǎn)作,垂足為
∵由己知,,,.
∴根據(jù)平面幾何知識(shí),可得.
又∵由(1)平面,得 ,且,
∴平面,結(jié)合平面,得.
又∵,∴平面.
在中,, ,,
∴,.
∴上存在點(diǎn),使得直線與平面垂直,此時(shí)線段長(zhǎng)為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)是世界上嚴(yán)重缺水的國(guó)家,某市為了制定合理的節(jié)水方案,對(duì)居民用水情況進(jìn)行調(diào)查,通過(guò)抽樣,獲得某年100為居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照分成9組,制成了如圖所示的頻率分布直方圖.
(1)求直方圖的的值;
(2)設(shè)該市有30萬(wàn)居民,估計(jì)全市居民中月均用水量不低于3噸的人數(shù),說(shuō)明理由.
(3)估計(jì)居民月用水量的中位數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) ,函數(shù) x.
(1)若g(mx2+2x+m)的定義域?yàn)镽,求實(shí)數(shù)m的取值范圍;
(2)當(dāng)x∈[﹣1,1]時(shí),求函數(shù)y=[f(x)]2﹣2af(x)+3的最小值h(a);
(3)是否存在非負(fù)實(shí)數(shù)m、n,使得函數(shù) 的定義域?yàn)閇m,n],值域?yàn)閇2m,2n],若存在,求出m、n的值;若不存在,則說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】《九章算術(shù)》中,將底面為長(zhǎng)方形且有一條側(cè)棱與底面垂直的四棱錐稱之為陽(yáng)馬,將四個(gè)面都為直角三角形的四面體稱之為鱉臑.在如圖所示的陽(yáng)馬P﹣ABCD中,側(cè)棱PD⊥底面ABCD,且PD=CD,點(diǎn)E是PC的中點(diǎn),連接DE,BD,BE.
(1)證明:DE⊥平面PBC.
(2)試判斷四面體EBCD是否為鱉臑,若是,寫(xiě)出其每個(gè)面的直角(只需寫(xiě)出結(jié)論);若不是,請(qǐng)說(shuō)明理由;
(3)記陽(yáng)馬P﹣ABCD的體積為V1 , 四面體EBCD的體積為V2 , 求 的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,則下列結(jié)論中正確的是( )
A. 將函數(shù)的圖象向左平移個(gè)單位后得到函數(shù)的圖象
B. 函數(shù)圖象關(guān)于點(diǎn)中心對(duì)稱
C. 函數(shù)的圖象關(guān)于對(duì)稱
D. 函數(shù)在區(qū)間內(nèi)單調(diào)遞增
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)為偶函數(shù).
(Ⅰ)求的最小值;
(Ⅱ)若不等式恒成立,求實(shí)數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知A(1,2),B(﹣1,2),動(dòng)點(diǎn)P滿足 ,若雙曲線 =1(a>0,b>0)的漸近線與動(dòng)點(diǎn)P的軌跡沒(méi)有公共點(diǎn),則雙曲線離心率的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)的定義域?yàn)椋ī仭蓿?)∪(0,+∞),f(x)是奇函數(shù),且當(dāng)x>0時(shí),f(x)=x2﹣x+a,若函數(shù)g(x)=f(x)﹣x的零點(diǎn)恰有兩個(gè),則實(shí)數(shù)a的取值范圍是( )
A.a<0
B.a≤0
C.a≤1
D.a≤0或a=1
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com