【題目】已知函數(shù).
(1)討論在上的單調(diào)性;
(2)若,求不等式的解集.
【答案】(1)當時,,則在上單調(diào)遞增; 當時,的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為;當時的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為,;當時
的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為;(2).
【解析】
(1),分和討論得出函數(shù)的單調(diào)性.
(2) 原不等式等價于,又,,當時,,所以在上單調(diào)遞增,從而可得出答案.
(1).
當時,,則在上單調(diào)遞增.
當時,令,得.
(i)當時,,
令,得;令,得.
所以的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為.
(ii)當時,,
令,得;
令,得或.
所以的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為,.
(iii)當時,,
令,得;令,得.
所以的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為.
(2)因為,所以,當時,,所以在上單調(diào)遞增.
因為,
所以原不等式等價于.
因為,,
所以,
解得,故所求不等式的解集為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】向50名學(xué)生調(diào)查對A、B兩事件的態(tài)度,有如下結(jié)果:贊成A的人數(shù)是全體的五分之三,其余的不贊成,贊成B的比贊成A的多3人,其余的不贊成;另外,對A、B都不贊成的學(xué)生數(shù)比對A、B都贊成的學(xué)生數(shù)的三分之一多1人. 問對A、B都贊成的學(xué)生有____________人
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,橢圓的右頂點為,左、右焦點分別為、,過點且斜率為的直線與軸交于點,與橢圓交于另一個點,且點在軸上的射影恰好為點.
(1)求點的坐標;
(2)過點且斜率大于的直線與橢圓交于兩點,若,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國古代有著輝煌的數(shù)學(xué)研究成果,《周牌算經(jīng)》、《九章算術(shù)》、《海島算經(jīng)》、《孫子算經(jīng)》、《緝古算經(jīng)》等10部專著是了解我國古代數(shù)學(xué)的重要文獻.這10部專著中有5部產(chǎn)生于魏晉南北朝時期.某中學(xué)擬從這10部專著中選擇2部作為“數(shù)學(xué)文化”課外閱讀教材則所選2部專著中至少有一部是魏晉南北朝時期的專著的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:過點,過坐標原點作兩條互相垂直的射線與橢圓分別交于,兩點.
(1)證明:當取得最小值時,橢圓的離心率為.
(2)若橢圓的焦距為2,是否存在定圓與直線總相切?若存在,求定圓的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=sin(ωx+φ)(ω>0,)的最小正周期為π,且關(guān)于中心對稱,則下列結(jié)論正確的是( )
A.f(1)<f(0)<f(2)B.f(0)<f(2)<f(1)
C.f(2)<f(0)<f(1)D.f(2)<f(1)<f(0)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若數(shù)列滿足,數(shù)列為數(shù)列,記.
(1)寫出一個滿足,且的數(shù)列;
(2)若,,證明:數(shù)列是遞增數(shù)列的充要條件是;
(3)對任意給定的整數(shù),是否存在首項為0的數(shù)列,使得?如果存在,寫出一個滿足條件的數(shù)列;如果不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“割圓術(shù)”是我國古代計算圓周率的一種方法.在公元年左右,由魏晉時期的數(shù)學(xué)家劉徽發(fā)明.其原理就是利用圓內(nèi)接正多邊形的面積逐步逼近圓的面積,進而求.當時劉微就是利用這種方法,把的近似值計算到和之間,這是當時世界上對圓周率的計算最精確的數(shù)據(jù).這種方法的可貴之處就是利用已知的、可求的來逼近未知的、要求的,用有限的來逼近無窮的.為此,劉微把它概括為“割之彌細,所失彌少,割之又割,以至于不可割,則與圓合體,而無所失矣”.這種方法極其重要,對后世產(chǎn)生了巨大影響,在歐洲,這種方法后來就演變?yōu)楝F(xiàn)在的微積分.根據(jù)“割圓術(shù)”,若用正二十四邊形來估算圓周率,則的近似值是( )(精確到)(參考數(shù)據(jù))
A.B.
C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com