18.已知橢圓C的焦點(diǎn)F1、F2在x軸上,離心率為$\frac{1}{2}$,過F1作直線l交C于A、B兩點(diǎn),△F2AB的周長(zhǎng)為8,則C的標(biāo)準(zhǔn)方程為( 。
A.$\frac{x^2}{16}+\frac{y^2}{12}=1$B.$\frac{x^2}{4}+\frac{y^2}{3}=1$C.$\frac{x^2}{4}+{y^2}=1$D.$\frac{x^2}{2}+{y^2}=1$

分析 由題意可知:設(shè)橢圓的方程:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1$(a>b>0),則e=$\frac{c}{a}$=$\frac{1}{2}$,4a=8,a=2,c=1,b2=a2-c2=4-1=3,即可求得橢圓的標(biāo)準(zhǔn)方程.

解答 解:由題意可知:橢圓C的焦點(diǎn)F1、F2在x軸上,設(shè)橢圓的方程:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1$(a>b>0),
由e=$\frac{c}{a}$=$\frac{1}{2}$,
△F2AB的周長(zhǎng)為8,即4a=8,a=2,
即c=1,
b2=a2-c2=4-1=3,
∴橢圓的標(biāo)準(zhǔn)方程:$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$.
故選B.

點(diǎn)評(píng) 本題考查橢圓的標(biāo)準(zhǔn)方程及簡(jiǎn)單幾何性質(zhì),考查橢圓的離心率,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.計(jì)算式子lg2+lg5等于( 。
A.0B.1C.10D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.曲線C:y=$\frac{1}{8}$x2的焦點(diǎn)為F,定點(diǎn)A(-1,0),若射線FA與拋物線C交于點(diǎn)M,與拋物線C的準(zhǔn)線交于點(diǎn)N,則|MN|:|FN|的值是(  )
A.$\sqrt{5}$:(2+$\sqrt{5}$)B.2:(2+$\sqrt{5}$)C.1:(1+$\sqrt{5}$)D.$\sqrt{5}$:(1+$\sqrt{5}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.執(zhí)行下面的程序框圖,若p=10,則輸出的S等于( 。
A.$\frac{1023}{1024}$B.$\frac{1025}{1024}$C.$\frac{2047}{2048}$D.$\frac{2049}{2048}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若k∈R,則“k>1”是方程“$\frac{x^2}{k-1}+\frac{y^2}{k+1}=1$”表示橢圓的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知不等式x2-ax+a-2>0的解集為(-∞,x1)∪(x2,+∞),其中x1<0<x2,則${x_1}+{x_2}+\frac{2}{x_1}+\frac{2}{x_2}$的最大值為( 。
A.$\frac{3}{2}$B.0C.2D.$-\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知數(shù)列{an}的各項(xiàng)均為正數(shù),其前n項(xiàng)和為Sn,且滿足a1=1,an+1=2$\sqrt{S_n}+1,n∈{N^*}$.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列{bn}滿足bn=$\frac{{4{n^2}}}{{{a_n}{a_{n+1}}}}$,設(shè)數(shù)列{bn}的前n項(xiàng)和為Tn,若?n∈N*,不等式Tn-na<0恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.為研究?jī)勺兞縳和y的線性相關(guān)性,甲、乙兩人分別做了研究,利用線性回歸方法得到回歸直線方程m和n,兩人計(jì)算$\overline{x}$相同,$\overline{y}$也相同,則下列說法正確的是(  )
A.m與n重合B.m與n平行
C.m與n交于點(diǎn)($\overline{x}$,$\overline{y}$)D.無法判定m與n是否相交

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.某幾何體三視圖如圖所示,則該幾何體的體積為( 。
A.2B.4C.6D.12

查看答案和解析>>

同步練習(xí)冊(cè)答案