A. | $\sqrt{5}$:(2+$\sqrt{5}$) | B. | 2:(2+$\sqrt{5}$) | C. | 1:(1+$\sqrt{5}$) | D. | $\sqrt{5}$:(1+$\sqrt{5}$) |
分析 由x2=8y的焦點為F(0,2),點A坐標(biāo)為A(-1,0),直線AF的斜率為k=2,過M作MP⊥l于P,根據(jù)拋物線物定義得:|FM|=|PM|,$\frac{丨MP丨}{丨NP丨}$=2,可得|MP|=2|NP|,由勾股定理可知:|MN|=$\sqrt{丨MP{丨}^{2}+丨NP{丨}^{2}}$=$\sqrt{5}$|NP|,|FN|=|MN|+|MF|=|MN|+|MP|=(2+$\sqrt{5}$)|NP|,即可求得|MN|:|FN|的值.
解答 解:∵拋物線C:x2=8y的焦點為F(0,2),點A坐標(biāo)為A(-1,0),
∴拋物線的準(zhǔn)線方程為l:y=-2,直線AF的斜率為k=2,
過M作MP⊥l于P,根據(jù)拋物線物定義得:|FM|=|PM|,
∵Rt△MPN中,tan∠MNP=k=2,
∴$\frac{丨MP丨}{丨NP丨}$=2,可得|MP|=2|NP|,
則|MN|=$\sqrt{丨MP{丨}^{2}+丨NP{丨}^{2}}$=$\sqrt{5}$|NP|,
而|FN|=|MN|+|MF|=|MN|+|MP|=(2+$\sqrt{5}$)|NP|,
∴|MN|:|FN|=$\sqrt{5}$:(2+$\sqrt{5}$),
故選A.
點評 本題考查拋物線的性質(zhì),直線的斜率公式,勾股定理,考查計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充分必要條件 | D. | 既不充分又不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{9}{16}$ | B. | $\frac{9}{4}$ | C. | 2 | D. | $\frac{3}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2016 | B. | 2017 | C. | logπ2016 | D. | ln2016 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{x^2}{16}+\frac{y^2}{12}=1$ | B. | $\frac{x^2}{4}+\frac{y^2}{3}=1$ | C. | $\frac{x^2}{4}+{y^2}=1$ | D. | $\frac{x^2}{2}+{y^2}=1$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com