6.執(zhí)行下面的程序框圖,若p=10,則輸出的S等于( 。
A.$\frac{1023}{1024}$B.$\frac{1025}{1024}$C.$\frac{2047}{2048}$D.$\frac{2049}{2048}$

分析 分析程序中各變量、各語句的作用,再根據(jù)流程圖所示的順序,可知:該程序的作用是求$\frac{1}{2}$+$\frac{1}{{2}^{2}}$+…+$\frac{1}{{2}^{9}}$的和,由等比數(shù)列的前n項和公式計算可得答案.

解答 解:由程序框圖可知:
S=$\frac{1}{2}$+$\frac{1}{{2}^{2}}$+…+$\frac{1}{{2}^{9}}$=$\frac{\frac{1}{2}[1{-(\frac{1}{2})}^{9}]}{1-\frac{1}{2}}$=$\frac{1023}{1024}$,
故選:A.

點評 作這類題的關(guān)鍵是看懂其算法過程.把程序語言翻譯成代數(shù)去處理求值.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

15.已知拋物線的焦點在x軸上,且經(jīng)過點P$(\frac{1}{4},-1)$,
(1)求拋物線的標準方程;
(2)經(jīng)過焦點F且傾斜角是$\frac{π}{4}$的直線L與拋物線相交于兩點A和B,求弦長|AB|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.欲使函數(shù) y=Asinωx(A>0,ω>0)在閉區(qū)間[0,1]上至少出現(xiàn) 25 個最小值,則ω的最小值為49.5π.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.如圖所示的程序框圖,若f(x)=logπx,g(x)=lnx,輸入x=2016,則輸出的h(x)=( 。
A.2016B.2017C.logπ2016D.ln2016

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.若直線y=kx+b是曲線y=lnx+2的切線,也是曲線y=ln(x+1)的切線,則k=2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.網(wǎng)格紙的小正方形邊長為1,一個正三棱錐的左視圖如圖所示,則這個正三棱錐的體積為( 。
A.$\sqrt{3}$B.$3\sqrt{3}$C.$\frac{9}{2}$D.$\frac{9}{2}\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知橢圓C的焦點F1、F2在x軸上,離心率為$\frac{1}{2}$,過F1作直線l交C于A、B兩點,△F2AB的周長為8,則C的標準方程為( 。
A.$\frac{x^2}{16}+\frac{y^2}{12}=1$B.$\frac{x^2}{4}+\frac{y^2}{3}=1$C.$\frac{x^2}{4}+{y^2}=1$D.$\frac{x^2}{2}+{y^2}=1$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.從原點向圓x2+y2-12x+27=0作兩條切線,則這兩條切線的夾角的大小為( 。
A.30°B.60°C.90°D.120°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.如圖,四邊形ABCD為正方形,PD⊥平面ABCD,PD=$\sqrt{3}$AD,AE⊥PC于點E,EF∥CD,交PD于點F
(Ⅰ)證明:平面ADE⊥平面PBC
(Ⅱ)求二面角D-AE-F的余弦值.

查看答案和解析>>

同步練習冊答案